
1. MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language via a JDBC driver, which is called
MySQL Connector/J.

MySQL Connector/J is a JDBC-3.0 Type 4 driver, which means that is pure Java, implements version 3.0 of the JDBC specification,
and communicates directly with the MySQL server using the MySQL protocol.

Although JDBC is useful by itself, we would hope that if you are not familiar with JDBC that after reading the first few sections of this
manual, that you would avoid using naked JDBC for all but the most trivial problems and consider using one of the popular persistence
frameworks such as Hibernate, Spring's JDBC templates or Ibatis SQL Maps to do the majority of repetitive work and heavier lifting
that is sometimes required with JDBC.

This section is not designed to be a complete JDBC tutorial. If you need more information about using JDBC you might be interested in
the following online tutorials that are more in-depth than the information presented here:

• JDBC Basics — A tutorial from Sun covering beginner topics in JDBC

• JDBC Short Course — A more in-depth tutorial from Sun and JGuru

Key topics:

• For help with connection strings, connection options setting up your connection through JDBC, see Section 1.4.1,
“Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”.

• For tips on using Connector/J and JDBC with generic J2EE toolkits, see Section 1.5.2, “Using Connector/J with J2EE and Other
Java Frameworks”.

• Developers using the Tomcat server platform, see Section 1.5.2.2, “Using Connector/J with Tomcat”.

• Developers using JBoss, see Section 1.5.2.3, “Using Connector/J with JBoss”.

• Developers using Spring, see Section 1.5.2.4, “Using Connector/J with Spring”.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about using JDBC with MySQL in the Knowledge
Base articles about JDBC. Access to the MySQL Knowledge Base collection of articles is one of the advant-
ages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

1.1. Connector/J Versions
There are currently four versions of MySQL Connector/J available:

• Connector/J 5.1 is current in alpha status. It provides compatibility with all the functionality of MySQL, including 4.1, 5.0, 5.1 and
the 6.0 alpha release featuring the new Falcon storage engine. Connector/J 5.1 provides ease of development features, including
auto-registration with the Driver Manager, standardized validity checks, categorized SQLExceptions, support for the JDBC-4.0
XML processing, per connection client information, NCHAR, NVARCHAR and NCLOB types. This release also includes all bug fixes
up to and including Connector/J 5.0.6.

• Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes distributed transaction (XA) sup-
port.

• Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides support for all the functionality
in MySQL 5.0 except distributed transaction (XA) support.

• Connector/J 3.0 provides core functionality and was designed with connectivity to MySQL 3.x or MySQL 4.1 servers, although it
will provide basic compatibility with later versions of MySQL. Connector/J 3.0 does not support server-side prepared statements,
and does not support any of the features in versions of MySQL later than 4.1.

1

http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html
https://kb.mysql.com/search.php?cat=search&category=10
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html

The current recommended version for Connector/J is 5.0. This guide covers all three connector versions, with specific notes given
where a setting applies to a specific option.

1.1.1. Java Versions Supported

MySQL Connector/J supports Java-2 JVMs, including:

• JDK 1.2.x (only for Connector/J 3.1.x or earlier)

• JDK 1.3.x

• JDK 1.4.x

• JDK 1.5.x

If you are building Connector/J from source using the source distribution (see Section 1.2.4, “Installing from the Development Source
Tree”) then you must use JDK 1.4.x or newer to compiler the Connector package.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x.

Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run on JDKs older than 1.4 unless
the class verifier is turned off (by setting the -Xverify:none option to the Java runtime). This is because the class verifier will try to
load the class definition for java.sql.Savepoint even though it is not accessed by the driver unless you actually use savepoint
functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than 1.4.x, as it relies on
java.util.LinkedHashMap which was first available in JDK-1.4.0.

1.2. Connector/J Installation
You can install the Connector/J package using two methods, using either the binary or source distribution. The binary distribution
provides the easiest methods for installation; the source distribution enables you to customize your installation further. With either solu-
tion, you must manually add the Connector/J location to your Java CLASSPATH.

1.2.1. Installing Connector/J from a Binary Distribution

The easiest method of installation is to use the binary distribution of the Connector/J package. The binary distribution is available either
as a Tar/Gzip or Zip file which you must extract to a suitable location and then optionally make the information about the package
available by changing your CLASSPATH (see Section 1.2.2, “Installing the Driver and Configuring the CLASSPATH”).

MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files, and the JAR archive named
mysql-connector-java-[version]-bin.jar, and starting with Connector/J 3.1.8 a debug build of the driver in a file named
mysql-connector-java-[version]-bin-g.jar.

Starting with Connector/J 3.1.9, the .class files that constitute the JAR files are only included as part of the driver JAR file.

You should not use the debug build of the driver unless instructed to do so when reporting a problem or a bug to MySQL AB, as it is
not designed to be run in production environments, and will have adverse performance impact when used. The debug binary also de-
pends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J dis-
tribution.

You will need to use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for the .zip
archive, and tar for the .tar.gz archive). Because there are potentially long filenames in the distribution, we use the GNU tar archive
format. You will need to use GNU tar (or an application that understands the GNU tar archive format) to unpack the .tar.gz variant of
the distribution.

1.2.2. Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing mysql-connect-
or-java-[version]-bin.jar in your classpath, either by adding the full path to it to your CLASSPATH environment variable,
or by directly specifying it with the command line switch -cp when starting your JVM.

MySQL Connector/J

2

If you are going to use the driver with the JDBC DriverManager, you would use com.mysql.jdbc.Driver as the class that imple-
ments java.sql.Driver.

You can set the CLASSPATH environment variable under UNIX, Linux or Mac OS X either locally for a user within their .profile,
.login or other login file. You can also set it globally by editing the global /etc/profile file.

For example, under a C shell (csh, tcsh) you would add the Connector/J driver to your CLASSPATH using the following:

shell> setenv CLASSPATH /path/mysql-connector-java-[ver]-bin.jar:$CLASSPATH

Or with a Bourne-compatible shell (sh, ksh, bash):

export set CLASSPATH=/path/mysql-connector-java-[ver]-bin.jar:$CLASSPATH

Within Windows 2000, Windows XP and Windows Server 2003, you must set the environment variable through the System control
panel.

If you want to use MySQL Connector/J with an application server such as Tomcat or JBoss, you will have to read your vendor's docu-
mentation for more information on how to configure third-party class libraries, as most application servers ignore the CLASSPATH en-
vironment variable. For configuration examples for some J2EE application servers, see Section 1.5.2, “Using Connector/J with J2EE
and Other Java Frameworks”. However, the authoritative source for JDBC connection pool configuration information for your particu-
lar application server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the driver's .jar file in the WEB-
INF/lib subdirectory of your webapp, as this is a standard location for third party class libraries in J2EE web applications.

You can also use the MysqlDataSource or MysqlConnectionPoolDataSource classes in the com.mysql.jdbc.jdbc2.optional
package, if your J2EE application server supports or requires them. Starting with Connector/J 5.0.0, the
javax.sql.XADataSource interface is implemented via the
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource class, which supports XA distributed transactions when used in
combination with MySQL server version 5.0.

The various MysqlDataSource classes support the following parameters (through standard set mutators):

• user

• password

• serverName (see the previous section about fail-over hosts)

• databaseName

• port

1.2.3. Upgrading from an Older Version

MySQL AB tries to keep the upgrade process as easy as possible, however as is the case with any software, sometimes changes need to
be made in new versions to support new features, improve existing functionality, or comply with new standards.

This section has information about what users who are upgrading from one version of Connector/J to another (or to a new version of the
MySQL server, with respect to JDBC functionality) should be aware of.

1.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major changes are isolated to new
functionality exposed in MySQL-4.1 and newer, which includes Unicode character sets, server-side prepared statements, SQLState
codes returned in error messages by the server and various performance enhancements that can be enabled or disabled via configuration
properties.

• Unicode Character Sets — See the next section, as well as Character Set Support, for information on this new feature of MySQL.
If you have something misconfigured, it will usually show up as an error with a message similar to Illegal mix of colla-
tions.

MySQL Connector/J

3

http://dev.mysql.com/doc/refman/5.0/en/charset.html

• Server-side Prepared Statements — Connector/J 3.1 will automatically detect and use server-side prepared statements when they
are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing via all variants of Connection.prepareStatement() to
determine if it is a supported type of statement to prepare on the server side, and if it is not supported by the server, it instead pre-
pares it as a client-side emulated prepared statement. You can disable this feature by passing emulateUnsupportedPstmts=false in
your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the older client-side emulated prepared
statement code that is still presently used for MySQL servers older than 4.1.0 with the connection property useServerPrepSt-
mts=false

• Datetimes with all-zero components (0000-00-00 ...) — These values can not be represented reliably in Java. Connector/J
3.0.x always converted them to NULL when being read from a ResultSet.

Connector/J 3.1 throws an exception by default when these values are encountered as this is the most correct behavior according to
the JDBC and SQL standards. This behavior can be modified using the zeroDateTimeBehavior configuration property. The allow-
able values are:

• exception (the default), which throws an SQLException with an SQLState of S1009.

• convertToNull, which returns NULL instead of the date.

• round, which rounds the date to the nearest closest value which is 0001-01-01.

Starting with Connector/J 3.1.7, ResultSet.getString() can be decoupled from this behavior via noDatetimeString-
Sync=true (the default value is false) so that you can get retrieve the unaltered all-zero value as a String. It should be noted that
this also precludes using any time zone conversions, therefore the driver will not allow you to enable noDatetimeStringSync and
useTimezone at the same time.

• New SQLState Codes — Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL server (if supported), which are
different from the legacy X/Open state codes that Connector/J 3.0 uses. If connected to a MySQL server older than MySQL-4.1.0
(the oldest version to return SQLStates as part of the error code), the driver will use a built-in mapping. You can revert to the old
mapping by using the configuration property useSqlStateCodes=false.

• ResultSet.getString() — Calling ResultSet.getString() on a BLOB column will now return the address of the
byte[] array that represents it, instead of a String representation of the BLOB. BLOBs have no character set, so they can't be conver-
ted to java.lang.Strings without data loss or corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will treat as a java.sql.Clob.

• Debug builds — Starting with Connector/J 3.1.8 a debug build of the driver in a file named
mysql-connector-java-[version]-bin-g.jar is shipped alongside the normal binary jar file that is named mysql-
connector-java-[version]-bin.jar.

Starting with Connector/J 3.1.9, we don't ship the .class files unbundled, they are only available in the JAR archives that ship with
the driver.

You should not use the debug build of the driver unless instructed to do so when reporting a problem or bug to MySQL AB, as it is
not designed to be run in production environments, and will have adverse performance impact when used. The debug binary also de-
pends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J
distribution.

1.2.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

• Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character encoding was not supported by the
server, however the JDBC driver could use it, allowing storage of multiple character sets in latin1 tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this functionality, and can not up-
grade them to use the official Unicode character support in MySQL server version 4.1 or newer, you should add the following prop-
erty to your connection URL:

useOldUTF8Behavior=true

MySQL Connector/J

4

• Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side prepared statements when they are
available (MySQL server version 4.1.0 and newer). If your application encounters issues with server-side prepared statements, you
can revert to the older client-side emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServerPrepStmts=false

1.2.4. Installing from the Development Source Tree

Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get MySQL
Connector/J up and running on your system, you should use a standard release distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following prerequisites:

• Subversion, to check out the sources from our repository (available from http://subversion.tigris.org/).

• Apache Ant version 1.6 or newer (available from http://ant.apache.org/).

• JDK-1.4.2 or later. Although MySQL Connector/J can be installed on older JDKs, to compile it from source you must have at least
JDK-1.4.2.

The Subversion source code repository for MySQL Connector/J is located at http://svn.mysql.com/svnpublic/connector-j. In general,
you should not check out the entire repository because it contains every branch and tag for MySQL Connector/J and is quite large.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. At the time of this writing, there are three active branches of Connector/J: branch_3_0, branch_3_1 and branch_5_0.
Check out the latest code from the branch that you want with the following command (replacing [major] and [minor] with
appropriate version numbers):

shell> svn co »
http://svn.mysql.com/svnpublic/connector-j/branches/branch_[major]_[minor]/connector-j

This creates a connector-j subdirectory in the current directory that contains the latest sources for the requested branch.

2. Change location to the connector-j directory to make it your current working directory:

shell> cd connector-j

3. Issue the following command to compile the driver and create a .jar file suitable for installation:

shell> ant dist

This creates a build directory in the current directory, where all build output will go. A directory is created in the build direct-
ory that includes the version number of the sources you are building from. This directory contains the sources, compiled .class
files, and a .jar file suitable for deployment. For other possible targets, including ones that will create a fully packaged distribu-
tion, issue the following command:

shell> ant --projecthelp

4. A newly created .jar file containing the JDBC driver will be placed in the directory
build/mysql-connector-java-[version].

Install the newly created JDBC driver as you would a binary .jar file that you download from MySQL by following the instruc-
tions in Section 1.2.2, “Installing the Driver and Configuring the CLASSPATH”.

1.3. Connector/J Examples

MySQL Connector/J

5

http://subversion.tigris.org/
http://ant.apache.org/
http://svn.mysql.com/svnpublic/connector-j

Examples of using Connector/J are located throughout this document, this section provides a summary and links to these examples.

• Example 1, “Obtaining a connection from the DriverManager”

• Example 2, “Using java.sql.Statement to execute a SELECT query”

• Example 3, “Stored Procedures”

• Example 4, “Using Connection.prepareCall()”

• Example 5, “Registering output parameters”

• Example 6, “Setting CallableStatement input parameters”

• Example 7, “Retrieving results and output parameter values”

• Example 8, “Retrieving AUTO_INCREMENT column values using Statement.getGeneratedKeys()”

• Example 9, “Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID()”

• Example 10, “Retrieving AUTO_INCREMENT column values in Updatable ResultSets”

• Example 11, “Using a connection pool with a J2EE application server”

• Example 12, “Example of transaction with retry logic”

1.4. Connector/J (JDBC) Reference
This section of the manual contains reference material for MySQL Connector/J, some of which is automatically generated during the
Connector/J build process.

1.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connect-
or/J

The name of the class that implements java.sql.Driver in MySQL Connector/J is com.mysql.jdbc.Driver. The
org.gjt.mm.mysql.Driver class name is also usable to remain backward-compatible with MM.MySQL. You should use this
class name when registering the driver, or when otherwise configuring software to use MySQL Connector/J.

The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the hostname is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306, the default port number for
MySQL servers.

jdbc:mysql://[host:port],[host:port].../[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the database is not specified, the connection will be made with no default database. In this case, you will need to either call the set-
Catalog() method on the Connection instance or fully-specify table names using the database name (i.e. SELECT db-
name.tablename.colname FROM dbname.tablename...) in your SQL. Not specifying the database to use upon connec-
tion is generally only useful when building tools that work with multiple databases, such as GUI database managers.

MySQL Connector/J has fail-over support. This allows the driver to fail-over to any number of slave hosts and still perform read-only
queries. Fail-over only happens when the connection is in an autoCommit(true) state, because fail-over can not happen reliably
when a transaction is in progress. Most application servers and connection pools set autoCommit to true at the end of every transac-
tion/connection use.

The fail-over functionality has the following behavior:

• If the URL property autoReconnect is false: Failover only happens at connection initialization, and failback occurs when the driver

MySQL Connector/J

6

determines that the first host has become available again.

• If the URL property autoReconnect is true: Failover happens when the driver determines that the connection has failed (before every
query), and falls back to the first host when it determines that the host has become available again (after queriesBe-
foreRetryMaster queries have been issued).

In either case, whenever you are connected to a "failed-over" server, the connection will be set to read-only state, so queries that would
modify data will have exceptions thrown (the query will never be processed by the MySQL server).

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless otherwise noted, properties can be
set for a DataSource object or for a Connection object.

Configuration Properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the preferred method when using imple-
mentations of java.sql.DataSource):

• com.mysql.jdbc.jdbc2.optional.MysqlDataSource

• com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

• As a key/value pair in the java.util.Properties instance passed to DriverManager.getConnection() or
Driver.connect()

• As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(),
java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource setURL() method.

Note

If the mechanism you use to configure a JDBC URL is XML-based, you will need to use the XML character literal &
to separate configuration parameters, as the ampersand is a reserved character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name Definition Default
Value

Since Ver-
sion

user The user to connect as all versions

password The password to use when connecting all versions

socketFactory The name of the class that the driver should use for creating socket
connections to the server. This class must implement the interface
'com.mysql.jdbc.SocketFactory' and have public no-args construct-
or.

com.mysql.j
dbc.Standar
dSocket-
Factory

3.0.3

connectTimeout Timeout for socket connect (in milliseconds), with 0 being no
timeout. Only works on JDK-1.4 or newer. Defaults to '0'.

0 3.0.1

socketTimeout Timeout on network socket operations (0, the default means no
timeout).

0 3.0.1

connectionLifecycleInterceptors A comma-delimited list of classes that implement
"com.mysql.jdbc.ConnectionLifecycleInterceptor" that should no-
tified of connection lifecycle events (creation, destruction, com-
mit, rollback, setCatalog and setAutoCommit) and potentially alter
the execution of these commands. ConnectionLifecycleIntercept-
ors are "stackable", more than one interceptor may be specified via
the configuration property as a comma-delimited list, with the in-
terceptors executed in order from left to right.

5.1.4

useConfigs Load the comma-delimited list of configuration properties before
parsing the URL or applying user-specified properties. These con-
figurations are explained in the 'Configurations' of the documenta-

3.1.5

MySQL Connector/J

7

tion.

interactiveClient Set the CLIENT_INTERACTIVE flag, which tells MySQL to
timeout connections based on INTERACTIVE_TIMEOUT instead
of WAIT_TIMEOUT

false 3.1.0

localSocketAddress Hostname or IP address given to explicitly configure the interface
that the driver will bind the client side of the TCP/IP connection to
when connecting.

5.0.5

propertiesTransform An implementation of
com.mysql.jdbc.ConnectionPropertiesTransform that the driver
will use to modify URL properties passed to the driver before at-
tempting a connection

3.1.4

useCompression Use zlib compression when communicating with the server
(true/false)? Defaults to 'false'.

false 3.0.17

Networking.

Property Name Definition Default
Value

Since Ver-
sion

tcpKeepAlive If connecting using TCP/IP, should the driver set
SO_KEEPALIVE?

true 5.0.7

tcpNoDelay If connecting using TCP/IP, should the driver set
SO_TCP_NODELAY (disabling the Nagle Algorithm)?

true 5.0.7

tcpRcvBuf If connecting using TCP/IP, should the driver set SO_RCV_BUF
to the given value? The default value of '0', means use the platform
default value for this property)

0 5.0.7

tcpSndBuf If connecting using TCP/IP, shuold the driver set SO_SND_BUF
to the given value? The default value of '0', means use the platform
default value for this property)

0 5.0.7

tcpTrafficClass If connecting using TCP/IP, should the driver set traffic class or
type-of-service fields ?See the documentation for
java.net.Socket.setTrafficClass() for more information.

0 5.0.7

High Availability and Clustering.

Property Name Definition Default
Value

Since Ver-
sion

autoReconnect Should the driver try to re-establish stale and/or dead connections?
If enabled the driver will throw an exception for a queries issued
on a stale or dead connection, which belong to the current transac-
tion, but will attempt reconnect before the next query issued on the
connection in a new transaction. The use of this feature is not re-
commended, because it has side effects related to session state and
data consistency when applications don't handle SQLExceptions
properly, and is only designed to be used when you are unable to
configure your application to handle SQLExceptions resulting
from dead and stale connections properly. Alternatively, investig-
ate setting the MySQL server variable "wait_timeout" to some
high value rather than the default of 8 hours.

false 1.1

autoReconnectForPools Use a reconnection strategy appropriate for connection pools
(defaults to 'false')

false 3.1.3

failOverReadOnly When failing over in autoReconnect mode, should the connection
be set to 'read-only'?

true 3.0.12

maxReconnects Maximum number of reconnects to attempt if autoReconnect is
true, default is '3'.

3 1.1

reconnectAtTxEnd If autoReconnect is set to true, should the driver attempt reconnec- false 3.0.10

MySQL Connector/J

8

tions at the end of every transaction?

initialTimeout If autoReconnect is enabled, the initial time to wait between re-
connect attempts (in seconds, defaults to '2').

2 1.1

roundRobinLoadBalance When autoReconnect is enabled, and failoverReadonly is false,
should we pick hosts to connect to on a round-robin basis?

false 3.1.2

queriesBeforeRetryMaster Number of queries to issue before falling back to master when
failed over (when using multi-host failover). Whichever condition
is met first, 'queriesBeforeRetryMaster' or 'secondsBeforeRetry-
Master' will cause an attempt to be made to reconnect to the mas-
ter. Defaults to 50.

50 3.0.2

secondsBeforeRetryMaster How long should the driver wait, when failed over, before attempt-
ing

30 3.0.2

resourceId A globally unique name that identifies the resource that this data-
source or connection is connected to, used for XARe-
source.isSameRM() when the driver can't determine this value
based on hostnames used in the URL

5.0.1

Security.

Property Name Definition Default
Value

Since Ver-
sion

allowMultiQueries Allow the use of ';' to delimit multiple queries during one state-
ment (true/false), defaults to 'false'

false 3.1.1

useSSL Use SSL when communicating with the server (true/false), de-
faults to 'false'

false 3.0.2

requireSSL Require SSL connection if useSSL=true? (defaults to 'false'). false 3.1.0

allowLoadLocalInfile Should the driver allow use of 'LOAD DATA LOCAL INFILE...'
(defaults to 'true').

true 3.0.3

allowUrlInLocalInfile Should the driver allow URLs in 'LOAD DATA LOCAL INFILE'
statements?

false 3.1.4

clientCertificateKeyStorePassword Password for the client certificates KeyStore 5.1.0

clientCertificateKeyStoreType KeyStore type for client certificates (NULL or empty means use
default, standard keystore types supported by the JVM are "JKS"
and "PKCS12", your environment may have more available de-
pending on what security products are installed and available to
the JVM.

5.1.0

clientCertificateKeyStoreUrl URL to the client certificate KeyStore (if not specified, use de-
faults)

5.1.0

trustCertificateKeyStorePassword Password for the trusted root certificates KeyStore 5.1.0

trustCertificateKeyStoreType KeyStore type for trusted root certificates (NULL or empty means
use default, standard keystore types supported by the JVM are
"JKS" and "PKCS12", your environment may have more available
depending on what security products are installed and available to
the JVM.

5.1.0

trustCertificateKeyStoreUrl URL to the trusted root certificate KeyStore (if not specified, use
defaults)

5.1.0

paranoid Take measures to prevent exposure sensitive information in error
messages and clear data structures holding sensitive data when
possible? (defaults to 'false')

false 3.0.1

Performance Extensions.

Property Name Definition Default
Value

Since Ver-
sion

MySQL Connector/J

9

callableStmtCacheSize If 'cacheCallableStmts' is enabled, how many callable statements
should be cached?

100 3.1.2

metadataCacheSize The number of queries to cache ResultSetMetadata for if
cacheResultSetMetaData is set to 'true' (default 50)

50 3.1.1

prepStmtCacheSize If prepared statement caching is enabled, how many prepared
statements should be cached?

25 3.0.10

prepStmtCacheSqlLimit If prepared statement caching is enabled, what's the largest SQL
the driver will cache the parsing for?

256 3.0.10

alwaysSendSetIsolation Should the driver always communicate with the database when
Connection.setTransactionIsolation() is called? If set to false, the
driver will only communicate with the database when the reques-
ted transaction isolation is different than the whichever is newer,
the last value that was set via Connec-
tion.setTransactionIsolation(), or the value that was read from the
server when the connection was established.

true 3.1.7

maintainTimeStats Should the driver maintain various internal timers to enable idle
time calculations as well as more verbose error messages when the
connection to the server fails? Setting this property to false re-
moves at least two calls to System.getCurrentTimeMillis() per
query.

true 3.1.9

useCursorFetch If connected to MySQL > 5.0.2, and setFetchSize() > 0 on a state-
ment, should that statement use cursor-based fetching to retrieve
rows?

false 5.0.0

blobSendChunkSize Chunk to use when sending BLOB/CLOBs via ServerPrepared-
Statements

1048576 3.1.9

cacheCallableStmts Should the driver cache the parsing stage of CallableStatements false 3.1.2

cachePrepStmts Should the driver cache the parsing stage of PreparedStatements of
client-side prepared statements, the "check" for suitability of serv-
er-side prepared and server-side prepared statements themselves?

false 3.0.10

cacheResultSetMetadata Should the driver cache ResultSetMetaData for Statements and
PreparedStatements? (Req. JDK-1.4+, true/false, default 'false')

false 3.1.1

cacheServerConfiguration Should the driver cache the results of 'SHOW VARIABLES' and
'SHOW COLLATION' on a per-URL basis?

false 3.1.5

defaultFetchSize The driver will call setFetchSize(n) with this value on all newly-
created Statements

0 3.1.9

dontTrackOpenResources The JDBC specification requires the driver to automatically track
and close resources, however if your application doesn't do a good
job of explicitly calling close() on statements or result sets, this
can cause memory leakage. Setting this property to true relaxes
this constraint, and can be more memory efficient for some applic-
ations.

false 3.1.7

dynamicCalendars Should the driver retrieve the default calendar when required, or
cache it per connection/session?

false 3.1.5

elideSetAutoCommits If using MySQL-4.1 or newer, should the driver only issue 'set
autocommit=n' queries when the server's state doesn't match the
requested state by Connection.setAutoCommit(boolean)?

false 3.1.3

enableQueryTimeouts When enabled, query timeouts set via State-
ment.setQueryTimeout() use a shared java.util.Timer instance for
scheduling. Even if the timeout doesn't expire before the query is
processed, there will be memory used by the TimerTask for the
given timeout which won't be reclaimed until the time the timeout
would have expired if it hadn't been cancelled by the driver. High-
load environments might want to consider disabling this function-
ality.

true 5.0.6

holdResultsOpenOverStatementClose Should the driver close result sets on Statement.close() as required
by the JDBC specification?

false 3.1.7

MySQL Connector/J

10

largeRowSizeThreshold What size result set row should the JDBC driver consider "large",
and thus use a more memory-efficient way of representing the row
internally?

2048 5.1.1

loadBalanceStrategy If using a load-balanced connection to connect to SQL nodes in a
MySQL Cluster/NDB configuration (by using the URL prefix "jd-
bc:mysql:loadbalance://"), which load balancing algorithm should
the driver use: (1) "random" - the driver will pick a random host
for each request. This tends to work better than round-robin, as the
randomness will somewhat account for spreading loads where re-
quests vary in response time, while round-robin can sometimes
lead to overloaded nodes if there are variations in response times
across the workload. (2) "bestResponseTime" - the driver will
route the request to the host that had the best response time for the
previous transaction.

random 5.0.6

locatorFetchBufferSize If 'emulateLocators' is configured to 'true', what size buffer should
be used when fetching BLOB data for getBinaryInputStream?

1048576 3.2.1

rewriteBatchedStatements Should the driver use multiqueries (irregardless of the setting of
"allowMultiQueries") as well as rewriting of prepared statements
for INSERT into multi-value inserts when executeBatch() is
called? Notice that this has the potential for SQL injection if using
plain java.sql.Statements and your code doesn't sanitize input cor-
rectly. Notice that for prepared statements, server-side prepared
statements can not currently take advantage of this rewrite option,
and that if you don't specify stream lengths when using Prepared-
Statement.set*Stream(), the driver won't be able to determine the
optimum number of parameters per batch and you might receive
an error from the driver that the resultant packet is too large. State-
ment.getGeneratedKeys() for these rewritten statements only
works when the entire batch includes INSERT statements.

false 3.1.13

useDirectRowUnpack Use newer result set row unpacking code that skips a copy from
network buffers to a MySQL packet instance and instead reads dir-
ectly into the result set row data buffers.

true 5.1.1

useDynamicCharsetInfo Should the driver use a per-connection cache of character set in-
formation queried from the server when necessary, or use a built-
in static mapping that is more efficient, but isn't aware of custom
character sets or character sets implemented after the release of the
JDBC driver?

true 5.0.6

useFastDateParsing Use internal String->Date/Time/Timestamp conversion routines to
avoid excessive object creation?

true 5.0.5

useFastIntParsing Use internal String->Integer conversion routines to avoid excess-
ive object creation?

true 3.1.4

useJvmCharsetConverters Always use the character encoding routines built into the JVM,
rather than using lookup tables for single-byte character sets?

false 5.0.1

useLocalSessionState Should the driver refer to the internal values of autocommit and
transaction isolation that are set by Connection.setAutoCommit()
and Connection.setTransactionIsolation() and transaction state as
maintained by the protocol, rather than querying the database or
blindly sending commands to the database for commit() or roll-
back() method calls?

false 3.1.7

useReadAheadInput Use newer, optimized non-blocking, buffered input stream when
reading from the server?

true 3.1.5

Debugging/Profiling.

Property Name Definition Default
Value

Since Ver-
sion

logger The name of a class that implements "com.mysql.jdbc.log.Log"
that will be used to log messages to. (default is

com.mysql.j
dbc.log.Sta

3.1.1

MySQL Connector/J

11

"com.mysql.jdbc.log.StandardLogger", which logs to STDERR) ndardLog-
ger

gatherPerfMetrics Should the driver gather performance metrics, and report them via
the configured logger every 'reportMetricsIntervalMillis' milli-
seconds?

false 3.1.2

profileSQL Trace queries and their execution/fetch times to the configured
logger (true/false) defaults to 'false'

false 3.1.0

profileSql Deprecated, use 'profileSQL' instead. Trace queries and their exe-
cution/fetch times on STDERR (true/false) defaults to 'false'

2.0.14

reportMetricsIntervalMillis If 'gatherPerfMetrics' is enabled, how often should they be logged
(in ms)?

30000 3.1.2

maxQuerySizeToLog Controls the maximum length/size of a query that will get logged
when profiling or tracing

2048 3.1.3

packetDebugBufferSize The maximum number of packets to retain when 'enablePacketDe-
bug' is true

20 3.1.3

slowQueryThresholdMillis If 'logSlowQueries' is enabled, how long should a query (in ms)
before it is logged as 'slow'?

2000 3.1.2

slowQueryThresholdNanos If 'useNanosForElapsedTime' is set to true, and this property is set
to a non-zero value, the driver will use this threshold (in nano-
second units) to determine if a query was slow.

0 5.0.7

useUsageAdvisor Should the driver issue 'usage' warnings advising proper and effi-
cient usage of JDBC and MySQL Connector/J to the log
(true/false, defaults to 'false')?

false 3.1.1

autoGenerateTestcaseScript Should the driver dump the SQL it is executing, including server-
side prepared statements to STDERR?

false 3.1.9

autoSlowLog Instead of using slowQueryThreshold* to determine if a query is
slow enough to be logged, maintain statistics that allow the driver
to determine queries that are outside the 99th percentile?

true 5.1.4

clientInfoProvider The name of a class that implements the
com.mysql.jdbc.JDBC4ClientInfoProvider interface in order to
support JDBC-4.0's Connection.get/setClientInfo() methods

com.mysql.j
dbc.JDBC4
Com-
mentCli-
entInfoPro-
vider

5.1.0

dumpMetadataOnColumnNotFound Should the driver dump the field-level metadata of a result set into
the exception message when ResultSet.findColumn() fails?

false 3.1.13

dumpQueriesOnException Should the driver dump the contents of the query sent to the server
in the message for SQLExceptions?

false 3.1.3

enablePacketDebug When enabled, a ring-buffer of 'packetDebugBufferSize' packets
will be kept, and dumped when exceptions are thrown in key areas
in the driver's code

false 3.1.3

explainSlowQueries If 'logSlowQueries' is enabled, should the driver automatically is-
sue an 'EXPLAIN' on the server and send the results to the con-
figured log at a WARN level?

false 3.1.2

includeInnodbStatusInDeadlockExcep-
tions

Include the output of "SHOW ENGINE INNODB STATUS" in
exception messages when deadlock exceptions are detected?

false 5.0.7

logSlowQueries Should queries that take longer than 'slowQueryThresholdMillis'
be logged?

false 3.1.2

logXaCommands Should the driver log XA commands sent by MysqlXaConnection
to the server, at the DEBUG level of logging?

false 5.0.5

resultSetSizeThreshold If the usage advisor is enabled, how many rows should a result set
contain before the driver warns that it is suspiciously large?

100 5.0.5

traceProtocol Should trace-level network protocol be logged? false 3.1.2

useNanosForElapsedTime For profiling/debugging functionality that measures elapsed time,
should the driver try to use nanoseconds resolution if available

false 5.0.7

MySQL Connector/J

12

(JDK >= 1.5)?

Miscellaneous.

Property Name Definition Default
Value

Since Ver-
sion

useUnicode Should the driver use Unicode character encodings when handling
strings? Should only be used when the driver can't determine the
character set mapping, or you are trying to 'force' the driver to use
a character set that MySQL either doesn't natively support (such as
UTF-8), true/false, defaults to 'true'

true 1.1g

characterEncoding If 'useUnicode' is set to true, what character encoding should the
driver use when dealing with strings? (defaults is to 'autodetect')

1.1g

characterSetResults Character set to tell the server to return results as. 3.0.13

connectionCollation If set, tells the server to use this collation via 'set colla-
tion_connection'

3.0.13

useBlobToStoreUTF8OutsideBMP Tells the driver to treat [MEDIUM/LONG]BLOB columns as
[LONG]VARCHAR columns holding text encoded in UTF-8 that
has characters outside the BMP (4-byte encodings), which MySQL
server can't handle natively.

false 5.1.3

utf8OutsideBmpExcludedColumnNam
ePattern

When "useBlobToStoreUTF8OutsideBMP" is set to "true",
column names matching the given regex will still be treated as
BLOBs unless they match the regex specified for
"utf8OutsideBmpIncludedColumnNamePattern". The regex must
follow the patterns used for the java.util.regex package.

5.1.3

utf8OutsideBmpIncludedColumnName
Pattern

Used to specify exclusion rules to
"utf8OutsideBmpExcludedColumnNamePattern". The regex must
follow the patterns used for the java.util.regex package.

5.1.3

sessionVariables A comma-separated list of name/value pairs to be sent as SET
SESSION ... to the server when the driver connects.

3.1.8

allowNanAndInf Should the driver allow NaN or +/- INF values in PreparedState-
ment.setDouble()?

false 3.1.5

autoClosePStmtStreams Should the driver automatically call .close() on streams/readers
passed as arguments via set*() methods?

false 3.1.12

autoDeserialize Should the driver automatically detect and de-serialize objects
stored in BLOB fields?

false 3.1.5

blobsAreStrings Should the driver always treat BLOBs as Strings - specifically to
work around dubious metadata returned by the server for GROUP
BY clauses?

false 5.0.8

capitalizeTypeNames Capitalize type names in DatabaseMetaData? (usually only useful
when using WebObjects, true/false, defaults to 'false')

true 2.0.7

clobCharacterEncoding The character encoding to use for sending and retrieving TEXT,
MEDIUMTEXT and LONGTEXT values instead of the con-
figured connection characterEncoding

5.0.0

clobberStreamingResults This will cause a 'streaming' ResultSet to be automatically closed,
and any outstanding data still streaming from the server to be dis-
carded if another query is executed before all the data has been
read from the server.

false 3.0.9

continueBatchOnError Should the driver continue processing batch commands if one
statement fails. The JDBC spec allows either way (defaults to
'true').

true 3.0.3

createDatabaseIfNotExist Creates the database given in the URL if it doesn't yet exist. As-
sumes the configured user has permissions to create databases.

false 3.1.9

emptyStringsConvertToZero Should the driver allow conversions from empty string fields to
numeric values of '0'?

true 3.1.8

MySQL Connector/J

13

emulateLocators Should the driver emulate java.sql.Blobs with locators? With this
feature enabled, the driver will delay loading the actual Blob data
until the one of the retrieval methods (getInputStream(), get-
Bytes(), and so forth) on the blob data stream has been accessed.
For this to work, you must use a column alias with the value of the
column to the actual name of the Blob. The feature also has the
following restrictions: The SELECT that created the result set
must reference only one table, the table must have a primary key;
the SELECT must alias the original blob column name, specified
as a string, to an alternate name; the SELECT must cover all
columns that make up the primary key.

false 3.1.0

emulateUnsupportedPstmts Should the driver detect prepared statements that are not supported
by the server, and replace them with client-side emulated ver-
sions?

true 3.1.7

functionsNeverReturnBlobs Should the driver always treat data from functions returning
BLOBs as Strings - specifically to work around dubious metadata
returned by the server for GROUP BY clauses?

false 5.0.8

generateSimpleParameterMetadata Should the driver generate simplified parameter metadata for Pre-
paredStatements when no metadata is available either because the
server couldn't support preparing the statement, or server-side pre-
pared statements are disabled?

false 5.0.5

ignoreNonTxTables Ignore non-transactional table warning for rollback? (defaults to
'false').

false 3.0.9

jdbcCompliantTruncation Should the driver throw java.sql.DataTruncation exceptions when
data is truncated as is required by the JDBC specification when
connected to a server that supports warnings (MySQL 4.1.0 and
newer)? This property has no effect if the server sql-mode includes
STRICT_TRANS_TABLES.

true 3.1.2

maxRows The maximum number of rows to return (0, the default means re-
turn all rows).

-1 all versions

netTimeoutForStreamingResults What value should the driver automatically set the server setting
'net_write_timeout' to when the streaming result sets feature is in
use? (value has unit of seconds, the value '0' means the driver will
not try and adjust this value)

600 5.1.0

noAccessToProcedureBodies When determining procedure parameter types for CallableState-
ments, and the connected user can't access procedure bodies
through "SHOW CREATE PROCEDURE" or select on
mysql.proc should the driver instead create basic metadata (all
parameters reported as IN VARCHARs, but allowing registerOut-
Parameter() to be called on them anyway) instead of throwing an
exception?

false 5.0.3

noDatetimeStringSync Don't ensure that Result-
Set.getDatetimeType().toString().equals(ResultSet.getString())

false 3.1.7

noTimezoneConversionForTimeType Don't convert TIME values using the server timezone if 'use-
Timezone'='true'

false 5.0.0

nullCatalogMeansCurrent When DatabaseMetadataMethods ask for a 'catalog' parameter,
does the value null mean use the current catalog? (this is not JD-
BC-compliant, but follows legacy behavior from earlier versions
of the driver)

true 3.1.8

nullNamePatternMatchesAll Should DatabaseMetaData methods that accept *pattern paramet-
ers treat null the same as '%' (this is not JDBC-compliant, however
older versions of the driver accepted this departure from the spe-
cification)

true 3.1.8

overrideSupportsIntegrityEnhance-
mentFacility

Should the driver return "true" for Database-
MetaData.supportsIntegrityEnhancementFacility() even if the
database doesn't support it to workaround applications that require
this method to return "true" to signal support of foreign keys, even
though the SQL specification states that this facility contains much

false 3.1.12

MySQL Connector/J

14

more than just foreign key support (one such application being
OpenOffice)?

padCharsWithSpace If a result set column has the CHAR type and the value does not
fill the amount of characters specified in the DDL for the column,
should the driver pad the remaining characters with space (for AN-
SI compliance)?

false 5.0.6

pedantic Follow the JDBC spec to the letter. false 3.0.0

pinGlobalTxToPhysicalConnection When using XAConnections, should the driver ensure that opera-
tions on a given XID are always routed to the same physical con-
nection? This allows the XAConnection to support "XA START ...
JOIN" after "XA END" has been called

false 5.0.1

populateInsertRowWithDefaultValues When using ResultSets that are CONCUR_UPDATABLE, should
the driver pre-populate the "insert" row with default values from
the DDL for the table used in the query so those values are imme-
diately available for ResultSet accessors? This functionality re-
quires a call to the database for metadata each time a result set of
this type is created. If disabled (the default), the default values will
be populated by the an internal call to refreshRow() which pulls
back default values and/or values changed by triggers.

false 5.0.5

processEscapeCodesForPrepStmts Should the driver process escape codes in queries that are pre-
pared?

true 3.1.12

relaxAutoCommit If the version of MySQL the driver connects to does not support
transactions, still allow calls to commit(), rollback() and setAuto-
Commit() (true/false, defaults to 'false')?

false 2.0.13

retainStatementAfterResultSetClose Should the driver retain the Statement reference in a ResultSet
after ResultSet.close() has been called. This is not JDBC-com-
pliant after JDBC-4.0.

false 3.1.11

rollbackOnPooledClose Should the driver issue a rollback() when the logical connection in
a pool is closed?

true 3.0.15

runningCTS13 Enables workarounds for bugs in Sun's JDBC compliance testsuite
version 1.3

false 3.1.7

serverTimezone Override detection/mapping of timezone. Used when timezone
from server doesn't map to Java timezone

3.0.2

statementInterceptors A comma-delimited list of classes that implement
"com.mysql.jdbc.StatementInterceptor" that should be placed "in
between" query execution to influence the results. StatementInter-
ceptors are "chainable", the results returned by the "current" inter-
ceptor will be passed on to the next in in the chain, from left-
to-right order, as specified in this property.

5.1.1

strictFloatingPoint Used only in older versions of compliance test false 3.0.0

strictUpdates Should the driver do strict checking (all primary keys selected) of
updatable result sets (true, false, defaults to 'true')?

true 3.0.4

tinyInt1isBit Should the driver treat the datatype TINYINT(1) as the BIT type
(because the server silently converts BIT -> TINYINT(1) when
creating tables)?

true 3.0.16

transformedBitIsBoolean If the driver converts TINYINT(1) to a different type, should it use
BOOLEAN instead of BIT for future compatibility with MySQL-
5.0, as MySQL-5.0 has a BIT type?

false 3.1.9

treatUtilDateAsTimestamp Should the driver treat java.util.Date as a TIMESTAMP for the
purposes of PreparedStatement.setObject()?

true 5.0.5

ultraDevHack Create PreparedStatements for prepareCall() when required, be-
cause UltraDev is broken and issues a prepareCall() for _all_ state-
ments? (true/false, defaults to 'false')

false 2.0.3

useGmtMillisForDatetimes Convert between session timezone and GMT before creating Date
and Timestamp instances (value of "false" is legacy behavior,
"true" leads to more JDBC-compliant behavior.

false 3.1.12

MySQL Connector/J

15

useHostsInPrivileges Add '@hostname' to users in Database-
MetaData.getColumn/TablePrivileges() (true/false), defaults to
'true'.

true 3.0.2

useInformationSchema When connected to MySQL-5.0.7 or newer, should the driver use
the INFORMATION_SCHEMA to derive information used by
DatabaseMetaData?

false 5.0.0

useJDBCCompliantTimezoneShift Should the driver use JDBC-compliant rules when converting
TIME/TIMESTAMP/DATETIME values' timezone information
for those JDBC arguments which take a java.util.Calendar argu-
ment? (Notice that this option is exclusive of the "use-
Timezone=true" configuration option.)

false 5.0.0

useOldAliasMetadataBehavior Should the driver use the legacy behavior for "AS" clauses on
columns and tables, and only return aliases (if any) for ResultSet-
MetaData.getColumnName() or ResultSet-
MetaData.getTableName() rather than the original column/table
name?

false 5.0.4

useOldUTF8Behavior Use the UTF-8 behavior the driver did when communicating with
4.0 and older servers

false 3.1.6

useOnlyServerErrorMessages Don't prepend 'standard' SQLState error messages to error mes-
sages returned by the server.

true 3.0.15

useSSPSCompatibleTimezoneShift If migrating from an environment that was using server-side pre-
pared statements, and the configuration property "useJDBCCompli-
antTimeZoneShift" set to "true", use compatible behavior when
not using server-side prepared statements when sending
TIMESTAMP values to the MySQL server.

false 5.0.5

useServerPrepStmts Use server-side prepared statements if the server supports them? false 3.1.0

useSqlStateCodes Use SQL Standard state codes instead of 'legacy' X/Open/SQL
state codes (true/false), default is 'true'

true 3.1.3

useStreamLengthsInPrepStmts Honor stream length parameter in PreparedStatement/Result-
Set.setXXXStream() method calls (true/false, defaults to 'true')?

true 3.0.2

useTimezone Convert time/date types between client and server timezones
(true/false, defaults to 'false')?

false 3.0.2

useUnbufferedInput Don't use BufferedInputStream for reading data from the server true 3.0.11

yearIsDateType Should the JDBC driver treat the MySQL type "YEAR" as a
java.sql.Date, or as a SHORT?

true 3.1.9

zeroDateTimeBehavior What should happen when the driver encounters DATETIME val-
ues that are composed entirely of zeroes (used by MySQL to rep-
resent invalid dates)? Valid values are "exception", "round" and
"convertToNull".

exception 3.1.4

Connector/J also supports access to MySQL via named pipes on Windows NT/2000/XP using the NamedPipeSocketFactory as a plu-
gin-socket factory via the socketFactory property. If you don't use a namedPipePath property, the default of '\\.\pipe\MySQL' will be
used. If you use the NamedPipeSocketFactory, the hostname and port number values in the JDBC url will be ignored. You can
enable this feature using:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

Named pipes only work when connecting to a MySQL server on the same physical machine as the one the JDBC driver is being used
on. In simple performance tests, it appears that named pipe access is between 30%-50% faster than the standard TCP/IP access.

You can create your own socket factories by following the example code in com.mysql.jdbc.NamedPipeSocketFactory, or
com.mysql.jdbc.StandardSocketFactory.

1.4.2. JDBC API Implementation Notes

MySQL Connector/J passes all of the tests in the publicly-available version of Sun's JDBC compliance test suite. However, in many

MySQL Connector/J

16

places the JDBC specification is vague about how certain functionality should be implemented, or the specification allows leeway in
implementation.

This section gives details on a interface-by-interface level about how certain implementation decisions may affect how you use MySQL
Connector/J.

• Blob

Starting with Connector/J version 3.1.0, you can emulate Blobs with locators by adding the property 'emulateLocators=true' to your
JDBC URL. Using this method, the driver will delay loading the actual Blob data until you retrieve the other data and then use re-
trieval methods (getInputStream(), getBytes(), and so forth) on the blob data stream.

For this to work, you must use a column alias with the value of the column to the actual name of the Blob, for example:

SELECT id, 'data' as blob_data from blobtable

For this to work, you must also follow follow these rules:

• The SELECT must also reference only one table, the table must have a primary key.

• The SELECT must alias the original blob column name, specified as a string, to an alternate name.

• The SELECT must cover all columns that make up the primary key.

The Blob implementation does not allow in-place modification (they are copies, as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, you should use the corresponding PreparedState-
ment.setBlob() or ResultSet.updateBlob() (in the case of updatable result sets) methods to save changes back to the
database.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about type conversion in the Knowledge Base article,
Type Conversions Supported by MySQL Connector/J. To subscribe to MySQL Enterprise see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version 5.0 or newer via the
CallableStatement interface. Currently, the getParameterMetaData() method of CallableStatement is not sup-
ported.

• Clob

The Clob implementation does not allow in-place modification (they are copies, as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, you should use the PreparedState-
ment.setClob() method to save changes back to the database. The JDBC API does not have a ResultSet.updateClob()
method.

• Connection

Unlike older versions of MM.MySQL the isClosed() method does not ping the server to determine if it is alive. In accordance
with the JDBC specification, it only returns true if closed() has been called on the connection. If you need to determine if the
connection is still valid, you should issue a simple query, such as SELECT 1. The driver will throw an exception if the connection
is no longer valid.

• DatabaseMetaData

Foreign Key information (getImportedKeys()/getExportedKeys() and getCrossReference()) is only available
from InnoDB tables. However, the driver uses SHOW CREATE TABLE to retrieve this information, so when other storage engines
support foreign keys, the driver will transparently support them as well.

• PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement feature. Because of this, the
driver does not implement getParameterMetaData() or getMetaData() as it would require the driver to have a complete

MySQL Connector/J

17

https://kb.mysql.com/view.php?id=4929
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html

SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-encoded result sets are used when the
server supports them.

Take care when using a server-side prepared statement with large parameters that are set via setBinaryStream(), setAs-
ciiStream(), setUnicodeStream(), setBlob(), or setClob(). If you want to re-execute the statement with any large
parameter changed to a non-large parameter, it is necessary to call clearParameters() and set all parameters again. The reas-
on for this is as follows:

• During both server-side prepared statements and client-side emulation, large data is exchanged only when PreparedState-
ment.execute() is called.

• Once that has been done, the stream used to read the data on the client side is closed (as per the JDBC spec), and can't be read
from again.

• If a parameter changes from large to non-large, the driver must reset the server-side state of the prepared statement to allow the
parameter that is being changed to take the place of the prior large value. This removes all of the large data that has already been
sent to the server, thus requiring the data to be re-sent, via the setBinaryStream(), setAsciiStream(), setU-
nicodeStream(), setBlob() or setClob() methods.

Consequently, if you want to change the type of a parameter to a non-large one, you must call clearParameters() and set all
parameters of the prepared statement again before it can be re-executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most efficient way to operate, and
due to the design of the MySQL network protocol is easier to implement. If you are working with ResultSets that have a large num-
ber of rows or large values, and can not allocate heap space in your JVM for the memory required, you can tell the driver to stream
the results back one row at a time.

To enable this functionality, you need to create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE serves as a signal to the driver
to stream result sets row-by-row. After this any result sets created with the statement will be retrieved row-by-row.

There are some caveats with this approach. You will have to read all of the rows in the result set (or close it) before you can issue
any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level locks or row-level locks in some
other storage engine such as InnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes (which implies that the state-
ment needs to complete first). As with most other databases, statements are not complete until all the results pending on the state-
ment are read or the active result set for the statement is closed.

Therefore, if using streaming results, you should process them as quickly as possible if you want to maintain concurrent access to
the tables referenced by the statement producing the result set.

• ResultSetMetaData

The isAutoIncrement() method only works when using MySQL servers 4.0 and newer.

• Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier than 5.0.3, the setFetchS-
ize() method has no effect, other than to toggle result set streaming as described above.

Connector/J 5.0.0 and later include support for both Statement.cancel() and Statement.setQueryTimeout(). Both
require MySQL 5.0.0 or newer server, and require a separate connection to issue the KILL QUERY statement. In the case of
setQueryTimeout(), the implementation creates an additional thread to handle the timeout functionality.

MySQL Connector/J

18

Note

Failures to cancel the statement for setQueryTimeout() may manifest themselves as RuntimeException rather
than failing silently, as there is currently no way to unblock the thread that is executing the query being cancelled due to
timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so "setCursorName()" has no effect.

Connector/J 5.1.3 and later include two additional methods:

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to the MySQL server for
a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or URLInputStream that represents the
path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement, and will automatically
be closed by the driver, so it needs to be reset before each call to execute*() that would cause the MySQL server to request
data to fulfill the request for LOAD DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data in response to a
LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set via setLocalInfileInputStream().

1.4.3. Java, JDBC and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numerical type can be converted to any of the Java nu-
merical types, although round-off, overflow, or loss of precision may occur.

Starting with Connector/J 3.1.0, the JDBC driver will issue warnings or throw DataTruncation exceptions as is required by the JDBC
specification unless the connection was configured not to do so by using the property jdbcCompliantTruncation and setting it to false.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties - Miscellaneous.

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and SET java.lang.String, java.io.InputStream,
java.io.Reader, java.sql.Blob, java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION, NUMERIC,
DECIMAL, TINYINT, SMALLINT, MEDIUMINT, IN-
TEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Double, java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric data type that has less precision or capa-
city than the MySQL data type you are converting to/from.

The ResultSet.getObject() method uses the type conversions between MySQL and Java types, following the JDBC specifica-
tion where appropriate. The value returned by ResultSetMetaData.GetColumnClassName() is also shown below. For more
information on the java.sql.Types classes see Java 2 Platform Types.

MySQL Types to Java Types for ResultSet.getObject().

MySQL Type Name Return value of GetColumn-
ClassName

Returned as Java Class

MySQL Connector/J

19

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

BIT(1) (new in MySQL-5.0) BIT java.lang.Boolean

BIT(> 1) (new in MySQL-5.0) BIT byte[]

TINYINT TINYINT java.lang.Boolean if the configuration property tiny-
Int1isBit is set to true (the default) and the storage size is 1,
or java.lang.Integer if not.

BOOL, BOOLEAN TINYINT See TINYINT, above as these are aliases for TINYINT(1), cur-
rently.

SMALLINT[(M)]
[UNSIGNED]

SMALLINT [UNSIGNED] java.lang.Integer (regardless if UNSIGNED or not)

MEDIUMINT[(M)]
[UNSIGNED]

MEDIUMINT [UNSIGNED] java.lang.Integer, if UNSIGNED java.lang.Long

INT,INTEGER[(M)]
[UNSIGNED]

INTEGER [UNSIGNED] java.lang.Integer, if UNSIGNED java.lang.Long

BIGINT[(M)] [UNSIGNED] BIGINT [UNSIGNED] java.lang.Long, if UNSIGNED
java.math.BigInteger

FLOAT[(M,D)] FLOAT java.lang.Float

DOUBLE[(M,B)] DOUBLE java.lang.Double

DECIMAL[(M[,D])] DECIMAL java.math.BigDecimal

DATE DATE java.sql.Date

DATETIME DATETIME java.sql.Timestamp

TIMESTAMP[(M)] TIMESTAMP java.sql.Timestamp

TIME TIME java.sql.Time

YEAR[(2|4)] YEAR If yearIsDateType configuration property is set to false, then
the returned object type is java.sql.Short. If set to true (the
default) then an object of type java.sql.Date (with the date
set to January 1st, at midnight).

CHAR(M) CHAR java.lang.String (unless the character set for the column is
BINARY, then byte[] is returned.

VARCHAR(M) [BINARY] VARCHAR java.lang.String (unless the character set for the column is
BINARY, then byte[] is returned.

BINARY(M) BINARY byte[]

VARBINARY(M) VARBINARY byte[]

TINYBLOB TINYBLOB byte[]

TINYTEXT VARCHAR java.lang.String

BLOB BLOB byte[]

TEXT VARCHAR java.lang.String

MEDIUMBLOB MEDIUMBLOB byte[]

MEDIUMTEXT VARCHAR java.lang.String

LONGBLOB LONGBLOB byte[]

LONGTEXT VARCHAR java.lang.String

ENUM('value1','value2',...) CHAR java.lang.String

SET('value1','value2',...) CHAR java.lang.String

1.4.4. Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode form to the client character
encoding, including all queries sent via Statement.execute(), Statement.executeUpdate(), State-
ment.executeQuery() as well as all PreparedStatement and CallableStatement parameters with the exclusion of
parameters set using setBytes(), setBinaryStream(), setAsciiStream(), setUnicodeStream() and setBlob() .

MySQL Connector/J

20

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which could either be automatically de-
tected from the server configuration, or could be configured by the user through the useUnicode and characterEncoding prop-
erties.

Starting with MySQL Server 4.1, Connector/J supports a single character encoding between client and server, and any number of char-
acter encodings for data returned by the server to the client in ResultSets.

The character encoding between client and server is automatically detected upon connection. The encoding used by the driver is spe-
cified on the server via the character_set system variable for server versions older than 4.1.0 and character_set_server
for server versions 4.1.0 and newer. For more information, see Server Character Set and Collation.

To override the automatically-detected encoding on the client side, use the characterEncoding property in the URL used to con-
nect to the server.

When specifying character encodings on the client side, Java-style names should be used. The following table lists Java-style names for
MySQL character sets:

MySQL to Java Encoding Name Translations.

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS (or Cp932 or MS932 for MySQL Server < 4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

gb2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latin1 ISO8859_1

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

utf8 UTF-8

ucs2 UnicodeBig

Warning

Do not issue the query 'set names' with Connector/J, as the driver will not detect that the character set has changed, and
will continue to use the character set detected during the initial connection setup.

To allow multiple character sets to be sent from the client, the UTF-8 encoding should be used, either by configuring utf8 as the de-
fault server character set, or by configuring the JDBC driver to use UTF-8 through the characterEncoding property.

1.4.5. Connecting Securely Using SSL

SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver and the server. The perform-
ance penalty for enabling SSL is an increase in query processing time between 35% and 50%, depending on the size of the query, and

MySQL Connector/J

21

http://dev.mysql.com/doc/refman/5.0/en/charset-server.html

the amount of data it returns.

For SSL Support to work, you must have the following:

• A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not currently work with a JDK that
you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following JSSE bug: ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4273544.html

• A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL-4.0.4 or later, see Using Se-
cure Connections, for more information.

• A client certificate (covered later in this section)

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL server CA Certificate is located
in the SSL subdirectory of the MySQL source distribution. This is what SSL will use to determine if you are communicating with a se-
cure MySQL server.

To use Java's keytool to create a truststore in the current directory , and import the server's CA certificate (cacert.pem), you can
do the following (assuming that keytool is in your path. The keytool should be located in the bin subdirectory of your JDK or
JRE):

shell> keytool -import -alias mysqlServerCACert \
-file cacert.pem -keystore truststore

Keytool will respond with the following information:

Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus,

O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus,

O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Serial number: 0
Valid from:

Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:

MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C

Trust this certificate? [no]: yes
Certificate was added to keystore

You will then need to generate a client certificate, so that the MySQL server knows that it is talking to a secure client:

shell> keytool -genkey -keyalg rsa \
-alias mysqlClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keystore in the current directory.

You should respond with information that is appropriate for your situation:

Enter keystore password: *********
What is your first and last name?
[Unknown]: Matthews

What is the name of your organizational unit?
[Unknown]: Software Development

What is the name of your organization?
[Unknown]: MySQL AB

What is the name of your City or Locality?
[Unknown]: Flossmoor

What is the name of your State or Province?
[Unknown]: IL

What is the two-letter country code for this unit?
[Unknown]: US

Is <CN=Matthews, OU=Software Development, O=MySQL AB,
L=Flossmoor, ST=IL, C=US> correct?
[no]: y

Enter key password for <mysqlClientCertificate>
(RETURN if same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the following system properties when
you start your JVM, replacing path_to_keystore_file with the full path to the keystore file you created, path_to_truststore_file with the

MySQL Connector/J

22

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://dev.mysql.com/doc/refman/5.0/en/secure-connections.html
http://dev.mysql.com/doc/refman/5.0/en/secure-connections.html

path to the truststore file you created, and using the appropriate password values for each property. You can do this either on the com-
mand line:

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=password

Or you can set the values directly within the application:

System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","password");
System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","password");

You will also need to set useSSL to true in your connection parameters for MySQL Connector/J, either by adding useSSL=true to
your URL, or by setting the property useSSL to true in the java.util.Properties instance you pass to DriverMan-
ager.getConnection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the following key events:

...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }

Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........
0030: 0A 00 12 00 13 00 03 00 11 01 00
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1
RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »

202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }

Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}

Cipher Suite: { 0, 5 }
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00
main, READ: SSL v3.1 Handshake, length = 1712
...

JSSE provides debugging (to STDOUT) when you set the following system property: -Djavax.net.debug=all This will tell you
what keystores and truststores are being used, as well as what is going on during the SSL handshake and certificate exchange. It will be
helpful when trying to determine what is not working when trying to get an SSL connection to happen.

1.4.6. Using Master/Slave Replication with ReplicationConnection

Starting with Connector/J 3.1.7, we've made available a variant of the driver that will automatically send queries to a read/write master,
or a failover or round-robin loadbalanced set of slaves based on the state of Connection.getReadOnly() .

An application signals that it wants a transaction to be read-only by calling Connection.setReadOnly(true), this replication-
aware connection will use one of the slave connections, which are load-balanced per-vm using a round-robin scheme (a given connec-
tion is sticky to a slave unless that slave is removed from service). If you have a write transaction, or if you have a read that is time-
sensitive (remember, replication in MySQL is asynchronous), set the connection to be not read-only, by calling Connec-
tion.setReadOnly(false) and the driver will ensure that further calls are sent to the master MySQL server. The driver takes
care of propagating the current state of autocommit, isolation level, and catalog between all of the connections that it uses to accomplish
this load balancing functionality.

MySQL Connector/J

23

To enable this functionality, use the " com.mysql.jdbc.ReplicationDriver " class when configuring your application server's
connection pool or when creating an instance of a JDBC driver for your standalone application. Because it accepts the same URL
format as the standard MySQL JDBC driver, ReplicationDriver does not currently work with java.sql.DriverManager -
based connection creation unless it is the only MySQL JDBC driver registered with the DriverManager .

Here is a short, simple example of how ReplicationDriver might be used in a standalone application.

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;

import com.mysql.jdbc.ReplicationDriver;

public class ReplicationDriverDemo {

public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();

Properties props = new Properties();

// We want this for failover on the slaves
props.put("autoReconnect", "true");

// We want to load balance between the slaves
props.put("roundRobinLoadBalance", "true");

props.put("user", "foo");
props.put("password", "bar");

//
// Looks like a normal MySQL JDBC url, with a
// comma-separated list of hosts, the first
// being the 'master', the rest being any number
// of slaves that the driver will load balance against
//

Connection conn =
driver.connect("jdbc:mysql://master,slave1,slave2,slave3/test",

props);

//
// Perform read/write work on the master
// by setting the read-only flag to "false"
//

conn.setReadOnly(false);
conn.setAutoCommit(false);
conn.createStatement().executeUpdate("UPDATE some_table");
conn.commit();

//
// Now, do a query from a slave, the driver automatically picks one
// from the list
//

conn.setReadOnly(true);

ResultSet rs =
conn.createStatement().executeQuery("SELECT a,b FROM alt_table");

.......
}

}

1.4.7. Mapping MySQL Error Numbers to SQLStates

The table below provides a mapping of the MySQL Error Numbers to SQL States

Table 1. Mapping of MySQL Error Numbers to SQLStates

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

102 ER_DUP S10 230

MySQL Connector/J

24

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

2 _KEY 00 00

103
7

ER_OUT
OFMEM
ORY

S10
01

HY
001

103
8

ER_OUT
_OF_SO
RT-
MEMOR
Y

S10
01

HY
001

104
0

ER_CON
_COUNT
_ERROR

080
04

080
04

104
2

ER_BAD
HOST
ERROR

080
04

08S
01

104
3

ER_HAN
DSHAK
E_ERRO
R

080
04

08S
01

104
4

ER_DBA
CCESS_
DENIED
_ERROR

S10
00

420
00

104
5

ER_ACC
ESS_DE
NIED_E
RROR

280
00

280
00

104
7

ER_UNK
NOWN_
COM_E
RROR

08S
01

HY
000

105
0

ER_TAB
LE_EXIS
TS_ERR
OR

S10
00

42S
01

105
1

ER_BAD
_TABLE
_ERROR

42S
02

42S
02

105
2

ER_NON
UNIQ
ERROR

S10
00

230
00

105
3

ER_SER
VER_SH
UT-
DOWN

S10
00

08S
01

105
4

ER_BAD
FIELD
ERROR

S00
22

42S
22

105
5

ER_WR
ONG_FI
ELD_WI

S10
09

420
00

MySQL Connector/J

25

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

TH_GRO
UP

105
6

ER_WR
ONG_G
ROUP_F
IELD

S10
09

420
00

105
7

ER_WR
ONG_SU
M_SELE
CT

S10
09

420
00

105
8

ER_WR
ONG_V
ALUE_C
OUNT

21S
01

21S
01

105
9

ER_TOO
LONG
IDENT

S10
09

420
00

106
0

ER_DUP
_FIELD
NAME

S10
09

42S
21

106
1

ER_DUP
_KEYN
AME

S10
09

420
00

106
2

ER_DUP
_ENTRY

S10
09

230
00

106
3

ER_WR
ONG_FI
ELD_SP
EC

S10
09

420
00

106
4

ER_PAR
SE_ERR
OR

420
00

420
00

106
5

ER_EMP
TY_QUE
RY

420
00

420
00

106
6

ER_NON
UNIQ_T
ABLE

S10
09

420
00

106
7

ER_INV
AL-
ID_DEF
AULT

S10
09

420
00

106
8

ER_MU
LTIPLE_
PRI_KE
Y

S10
09

420
00

106
9

ER_TOO
_MANY
_KEYS

S10
09

420
00

107 ER_TOO S10 420

MySQL Connector/J

26

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

0 _MANY
_KEY_P
ARTS

09 00

107
1

ER_TOO
LONG
KEY

S10
09

420
00

107
2

ER_KEY
_COLU
MN_DO
ES_NOT
_EXITS

S10
09

420
00

107
3

ER_BLO
B_USED
_AS_KE
Y

S10
09

420
00

107
4

ER_TOO
_BIG_FI
ELDLEN
GTH

S10
09

420
00

107
5

ER_WR
ONG_A
UTO_KE
Y

S10
09

420
00

108
0

ER_FOR
CING_C
LOSE

S10
00

08S
01

108
1

ER_IPSO
CK_ERR
OR

08S
01

08S
01

108
2

ER_NO_
SUCH_I
NDEX

S10
09

42S
12

108
3

ER_WR
ONG_FI
ELD_TE
RMIN-
ATORS

S10
09

420
00

108
4

ER_BLO
BS_AND
_NO_TE
RMIN-
ATED

S10
09

420
00

109
0

ER_CAN
T_REM
OVE_AL
L_FIELD
S

S10
00

420
00

109
1

ER_CAN
T_DROP
FIELD
OR_KEY

S10
00

420
00

MySQL Connector/J

27

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

110
1

ER_BLO
B_CANT
HAVE
DE-
FAULT

S10
00

420
00

110
2

ER_WR
ONG_D
B_NAM
E

S10
00

420
00

110
3

ER_WR
ONG_T
ABLE_N
AME

S10
00

420
00

110
4

ER_TOO
_BIG_SE
LECT

S10
00

420
00

110
6

ER_UNK
NOWN_
PRO-
CED-
URE

S10
00

420
00

110
7

ER_WR
ONG_PA
RAM-
COUNT_
TO_PRO
CED-
URE

S10
00

420
00

110
9

ER_UNK
NOWN_
TABLE

S10
00

42S
02

111
0

ER_FIEL
D_SPECI
FIED_T
WICE

S10
00

420
00

111
2

ER_UNS
UPPOR-
TED_EX
TEN-
SION

S10
00

420
00

111
3

ER_TAB
LE_MUS
T_HAVE
_COLU
MNS

S10
00

420
00

111
5

ER_UNK
NOWN_
CHAR-
AC-
TER_SE
T

S10
00

420
00

111 ER_TOO S10 420

MySQL Connector/J

28

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

8 _BIG_R
OWSIZE

00 00

112
0

ER_WR
ONG_O
UTER_J
OIN

S10
00

420
00

112
1

ER_NUL
L_COLU
MN_IN_
INDEX

S10
00

420
00

112
9

ER_HOS
T_IS_BL
OCKED

080
04

HY
000

113
0

ER_HOS
T_NOT_
PRIV-
ILEGED

080
04

HY
000

113
1

ER_PAS
SWORD
_ANON
YM-
OUS_US
ER

S10
00

420
00

113
2

ER_PAS
SWORD
_NOT_A
LLOWE
D

S10
00

420
00

113
3

ER_PAS
SWORD
_NO_M
ATCH

S10
00

420
00

113
6

ER_WR
ONG_V
ALUE_C
OUNT_
ON_RO
W

S10
00

21S
01

113
8

ER_INV
AL-
ID_USE_
OF_NUL
L

S10
00

420
00

113
9

ER_REG
EXP_ER
ROR

S10
00

420
00

114
0

ER_MIX
_OF_GR
OUP_FU
NC_AN
D_FIEL
DS

S10
00

420
00

MySQL Connector/J

29

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

114
1

ER_NON
EXIST-
ING_GR
ANT

S10
00

420
00

114
2

ER_TAB
LEAC-
CESS_D
ENIED_
ERROR

S10
00

420
00

114
3

ER_COL
UM-
NAC-
CESS_D
ENIED_
ERROR

S10
00

420
00

114
4

ER_ILLE
GAL_GR
ANT_FO
R_TABL
E

S10
00

420
00

114
5

ER_GRA
NT_WR
ONG_H
OST_OR
_USER

S10
00

420
00

114
6

ER_NO_
SUCH_T
ABLE

S10
00

42S
02

114
7

ER_NON
EXIST-
ING_TA
BLE_GR
ANT

S10
00

420
00

114
8

ER_NOT
_ALLO
WED_C
OM-
MAND

S10
00

420
00

114
9

ER_SYN
TAX_ER
ROR

S10
00

420
00

115
2

ER_ABO
RT-
ING_CO
NNEC-
TION

S10
00

08S
01

115
3

ER_NET
_PACKE
T_TOO_
LARGE

S10
00

08S
01

115
4

ER_NET
READ

S10
00

08S
01

MySQL Connector/J

30

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

ER-
ROR_FR
OM_PIP
E

115
5

ER_NET
_FCNTL
_ERROR

S10
00

08S
01

115
6

ER_NET
_PACKE
TS_OUT
_OF_OR
DER

S10
00

08S
01

115
7

ER_NET
_UNCO
MPRESS
_ERROR

S10
00

08S
01

115
8

ER_NET
READ
ERROR

S10
00

08S
01

115
9

ER_NET
READ
INTER-
RUPTED

S10
00

08S
01

116
0

ER_NET
_ERROR
_ON_W
RITE

S10
00

08S
01

116
1

ER_NET
_WRITE
_INTER
RUPTED

S10
00

08S
01

116
2

ER_TOO
LONG
STRING

S10
00

420
00

116
3

ER_TAB
LE_CAN
T_HAN
DLE_BL
OB

S10
00

420
00

116
4

ER_TAB
LE_CAN
T_HAN
DLE_AU
TO_INC
RE-
MENT

S10
00

420
00

116
6

ER_WR
ONG_C
OLUMN
_NAME

S10
00

420
00

116 ER_WR S10 420

MySQL Connector/J

31

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

7 ONG_K
EY_COL
UMN

00 00

116
9

ER_DUP
_UNIQU
E

S10
00

230
00

117
0

ER_BLO
B_KEY_
WITHO
UT_LEN
GTH

S10
00

420
00

117
1

ER_PRI
MARY_
CANT_H
AVE_N
ULL

S10
00

420
00

117
2

ER_TOO
_MANY
_ROWS

S10
00

420
00

117
3

ER_REQ
UIRES_P
RIMAR
Y_KEY

S10
00

420
00

117
7

ER_CHE
CK_NO_
SUCH_T
ABLE

S10
00

420
00

117
8

ER_CHE
CK_NOT
_IMPLE
MEN-
TED

S10
00

420
00

117
9

ER_CAN
T_DO_T
HIS_DU
RING_A
N_TRAN
SAC-
TION

S10
00

250
00

118
4

ER_NE
W_ABO
RT-
ING_CO
NNEC-
TION

S10
00

08S
01

118
9

ER_MAS
TER_NE
T_READ

S10
00

08S
01

119
0

ER_MAS
TER_NE
T_WRIT
E

S10
00

08S
01

MySQL Connector/J

32

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

120
3

ER_TOO
_MANY
USER
CON-
NEC-
TIONS

S10
00

420
00

120
5

ER_LOC
K_WAIT
_TIMEO
UT

410
00

410
00

120
7

ER_REA
D_ONL
Y_TRAN
SAC-
TION

S10
00

250
00

121
1

ER_NO_
PERMIS-
SION_T
O_CREA
TE_USE
R

S10
00

420
00

121
3

ER_LOC
K_DEA
DLOCK

410
00

400
01

121
6

ER_NO_
REFER-
EN-
CED_RO
W

S10
00

230
00

121
7

ER_RO
W_IS_R
EFER-
ENCED

S10
00

230
00

121
8

ER_CON
NECT_T
O_MAS
TER

S10
00

08S
01

122
2

ER_WR
ONG_N
UM-
BER_OF
_COLU
MNS_IN
_SELEC
T

S10
00

210
00

122
6

ER_USE
R_LIMIT
_REACH
ED

S10
00

420
00

123
0

ER_NO_
DE-
FAULT

S10
00

420
00

MySQL Connector/J

33

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

123
1

ER_WR
ONG_V
ALUE_F
OR_VA
R

S10
00

420
00

123
2

ER_WR
ONG_T
YPE_FO
R_VAR

S10
00

420
00

123
4

ER_CAN
T_USE_
OP-
TION_H
ERE

S10
00

420
00

123
5

ER_NOT
_SUPPO
RTED_Y
ET

S10
00

420
00

123
9

ER_WR
ONG_FK
_DEF

S10
00

420
00

124
1

ER_OPE
RAND_
COLUM
NS

S10
00

210
00

124
2

ER_SUB
QUERY_
NO_1_R
OW

S10
00

210
00

124
7

ER_ILLE
GAL_RE
FER-
ENCE

S10
00

42S
22

124
8

ER_DER
IVED_M
UST_HA
VE_ALI
AS

S10
00

420
00

124
9

ER_SEL
ECT_RE
DUCED

S10
00

010
00

125
0

ER_TAB
LE-
NAME_
NOT_AL
LOWED
_HERE

S10
00

420
00

125
1

ER_NOT
_SUPPO
RTED_A
UTH_M
ODE

S10
00

080
04

MySQL Connector/J

34

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

125
2

ER_SPA
TIAL_C
ANT_H
AVE_N
ULL

S10
00

420
00

125
3

ER_COL
LA-
TION_C
HAR-
SET_MI
SMATC
H

S10
00

420
00

126
1

ER_WA
RN_TOO
_FEW_R
ECORDS

S10
00

010
00

126
2

ER_WA
RN_TOO
_MANY
_RECOR
DS

S10
00

010
00

126
3

ER_WA
RN_NUL
L_TO_N
OT-
NULL

S10
00

010
00

126
4

ER_WA
RN_DAT
A_OUT_
OF_RAN
GE

S10
00

010
00

126
5

ER_WA
RN_DAT
A_TRUN
CATED

S10
00

010
00

128
0

ER_WR
ONG_N
AME_F
OR_IND
EX

S10
00

420
00

128
1

ER_WR
ONG_N
AME_F
OR_CAT
ALOG

S10
00

420
00

128
6

ER_UNK
NOWN_
STOR-
AGE_EN
GINE

S10
00

420
00

MySQL Connector/J

35

1.5. Connector/J Notes and Tips

1.5.1. Basic JDBC Concepts

This section provides some general JDBC background.

1.5.1.1. Connecting to MySQL Using the DriverManager Interface

When you are using JDBC outside of an application server, the DriverManager class manages the establishment of Connections.

The DriverManager needs to be told which JDBC drivers it should try to make Connections with. The easiest way to do this is to
use Class.forName() on the class that implements the java.sql.Driver interface. With MySQL Connector/J, the name of this
class is com.mysql.jdbc.Driver. With this method, you could use an external configuration file to supply the driver class name
and driver parameters to use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the main() method of your application:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

// Notice, do not import com.mysql.jdbc.*
// or you will have problems!

public class LoadDriver {
public static void main(String[] args) {

try {
// The newInstance() call is a work around for some
// broken Java implementations

Class.forName("com.mysql.jdbc.Driver").newInstance();
} catch (Exception ex) {

// handle the error
}

}

After the driver has been registered with the DriverManager, you can obtain a Connection instance that is connected to a particu-
lar database by calling DriverManager.getConnection():

Example 1. Obtaining a connection from the DriverManager

This example shows how you can obtain a Connection instance from the DriverManager. There are a few different signatures for
the getConnection() method. You should see the API documentation that comes with your JDK for more specific information on
how to use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

...
try {

Connection conn =
DriverManager.getConnection("jdbc:mysql://localhost/test?" +

"user=monty&password=greatsqldb");

// Do something with the Connection

...
} catch (SQLException ex) {

// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}

Once a Connection is established, it can be used to create Statement and PreparedStatement objects, as well as retrieve
metadata about the database. This is explained in the following sections.

1.5.1.2. Using Statements to Execute SQL

Statement objects allow you to execute basic SQL queries and retrieve the results through the ResultSet class which is described

MySQL Connector/J

36

later.

To create a Statement instance, you call the createStatement() method on the Connection object you have retrieved via
one of the DriverManager.getConnection() or DataSource.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the executeQuery(String) method with the
SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method returns the number of rows affected
by the update statement.

If you don't know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT, then you can use the ex-
ecute(String SQL) method. This method will return true if the SQL query was a SELECT, or false if it was an UPDATE,
INSERT, or DELETE statement. If the statement was a SELECT query, you can retrieve the results by calling the getResultSet()
method. If the statement was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling getUp-
dateCount() on the Statement instance.

Example 2. Using java.sql.Statement to execute a SELECT query

// assume that conn is an already created JDBC connection
Statement stmt = null;
ResultSet rs = null;

try {
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT foo FROM bar");

// or alternatively, if you don't know ahead of time that
// the query will be a SELECT...

if (stmt.execute("SELECT foo FROM bar")) {
rs = stmt.getResultSet();

}

// Now do something with the ResultSet
} finally {

// it is a good idea to release
// resources in a finally{} block
// in reverse-order of their creation
// if they are no-longer needed

if (rs != null) {
try {

rs.close();
} catch (SQLException sqlEx) { // ignore }

rs = null;
}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) { // ignore }

stmt = null;
}

}

1.5.1.3. Using CallableStatements to Execute Stored Procedures

Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the java.sql.CallableStatement inter-
face is fully implemented with the exception of the getParameterMetaData() method.

For more information on MySQL stored procedures, please refer to http://dev.mysql.com/doc/mysql/en/stored-procedures.html.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

Note

Current versions of MySQL server do not return enough information for the JDBC driver to provide result set metadata for
callable statements. This means that when using CallableStatement, ResultSetMetaData may return NULL.

The following example shows a stored procedure that returns the value of inOutParam incremented by 1, and the string passed in via

MySQL Connector/J

37

http://dev.mysql.com/doc/mysql/en/stored-procedures.html

inputParam as a ResultSet:

Example 3. Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
INOUT inOutParam INT)

BEGIN
DECLARE z INT;
SET z = inOutParam + 1;
SET inOutParam = z;

SELECT inputParam;

SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall() .

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter placeholders are not optional:

Example 4. Using Connection.prepareCall()

import java.sql.CallableStatement;

...

//
// Prepare a call to the stored procedure 'demoSp'
// with two parameters
//
// Notice the use of JDBC-escape syntax ({call ...})
//

CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");

cStmt.setString(1, "abcdefg");

Note

Connection.prepareCall() is an expensive method, due to the metadata retrieval that the driver performs to sup-
port output parameters. For performance reasons, you should try to minimize unnecessary calls to Connec-
tion.prepareCall() by reusing CallableStatement instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you created the stored procedure), JDBC
requires that they be specified before statement execution using the various registerOutputParameter() methods in the
CallableStatement interface:

Example 5. Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//

MySQL Connector/J

38

//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter(2, Types.INTEGER);

//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However, CallableStatement also supports set-
ting parameters by name:

Example 6. Setting CallableStatement input parameters

...

//
// Set a parameter by index
//

cStmt.setString(1, "abcdefg");

//
// Alternatively, set a parameter using
// the parameter name
//

cStmt.setString("inputParameter", "abcdefg");

//
// Set the 'in/out' parameter using an index
//

cStmt.setInt(2, 1);

//
// Alternatively, set the 'in/out' parameter
// by name
//

cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods (executeUpdate(), ex-
ecuteQuery() or execute()), the most flexible method to call is execute(), as you do not need to know ahead of time if
the stored procedure returns result sets:

Example 7. Retrieving results and output parameter values

...

boolean hadResults = cStmt.execute();

//
// Process all returned result sets
//

while (hadResults) {
ResultSet rs = cStmt.getResultSet();

MySQL Connector/J

39

// process result set
...

hadResults = rs.getMoreResults();
}

//
// Retrieve output parameters
//
// Connector/J supports both index-based and
// name-based retrieval
//

int outputValue = cStmt.getInt(2); // index-based

outputValue = cStmt.getInt("inOutParam"); // name-based

...

1.5.1.4. Retrieving AUTO_INCREMENT Column Values

Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases that supported auto increment
or identity columns. With older JDBC drivers for MySQL, you could always use a MySQL-specific method on the Statement inter-
face, or issue the query SELECT LAST_INSERT_ID() after issuing an INSERT to a table that had an AUTO_INCREMENT key. Us-
ing the MySQL-specific method call isn't portable, and issuing a SELECT to get the AUTO_INCREMENT key's value requires another
round-trip to the database, which isn't as efficient as possible. The following code snippets demonstrate the three different ways to re-
trieve AUTO_INCREMENT values. First, we demonstrate the use of the new JDBC-3.0 method getGeneratedKeys() which is now
the preferred method to use if you need to retrieve AUTO_INCREMENT keys and have access to JDBC-3.0. The second example shows
how you can retrieve the same value using a standard SELECT LAST_INSERT_ID() query. The final example shows how updatable
result sets can retrieve the AUTO_INCREMENT value when using the insertRow() method.

Example 8. Retrieving AUTO_INCREMENT column values using Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets assuming you have a
// Connection 'conn' to a MySQL database already
// available

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_UPDATABLE);

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//

stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')",
Statement.RETURN_GENERATED_KEYS);

//
// Example of using Statement.getGeneratedKeys()
// to retrieve the value of an auto-increment
// value
//

int autoIncKeyFromApi = -1;

rs = stmt.getGeneratedKeys();

MySQL Connector/J

40

if (rs.next()) {
autoIncKeyFromApi = rs.getInt(1);

} else {

// throw an exception from here
}

rs.close();

rs = null;

System.out.println("Key returned from getGeneratedKeys():"
+ autoIncKeyFromApi);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

Example 9. Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID()

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets.

stmt = conn.createStatement();

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//

stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')");

//
// Use the MySQL LAST_INSERT_ID()
// function to do the same thing as getGeneratedKeys()
//

int autoIncKeyFromFunc = -1;
rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");

if (rs.next()) {
autoIncKeyFromFunc = rs.getInt(1);

} else {
// throw an exception from here

}

rs.close();

System.out.println("Key returned from " +
"'SELECT LAST_INSERT_ID()': " +
autoIncKeyFromFunc);

MySQL Connector/J

41

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

Example 10. Retrieving AUTO_INCREMENT column values in Updatable ResultSets

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets as well as an 'updatable'
// one, assuming you have a Connection 'conn' to
// a MySQL database already available
//

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_UPDATABLE);

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Example of retrieving an AUTO INCREMENT key
// from an updatable result set
//

rs = stmt.executeQuery("SELECT priKey, dataField "
+ "FROM autoIncTutorial");

rs.moveToInsertRow();

rs.updateString("dataField", "AUTO INCREMENT here?");
rs.insertRow();

//
// the driver adds rows at the end
//

rs.last();

//
// We should now be on the row we just inserted
//

int autoIncKeyFromRS = rs.getInt("priKey");

rs.close();

rs = null;

System.out.println("Key returned for inserted row: "
+ autoIncKeyFromRS);

} finally {

if (rs != null) {
try {

rs.close();

MySQL Connector/J

42

} catch (SQLException ex) {
// ignore

}
}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

When you run the preceding example code, you should get the following output: Key returned from getGeneratedKeys(): 1 Key
returned from SELECT LAST_INSERT_ID(): 1 Key returned for inserted row: 2 You should be aware, that at times, it can be tricky
to use the SELECT LAST_INSERT_ID() query, as that function's value is scoped to a connection. So, if some other query happens
on the same connection, the value will be overwritten. On the other hand, the getGeneratedKeys() method is scoped by the
Statement instance, so it can be used even if other queries happen on the same connection, but not on the same Statement in-
stance.

1.5.2. Using Connector/J with J2EE and Other Java Frameworks

This section describes how to use Connector/J in several contexts.

1.5.2.1. General J2EE Concepts

This section provides general background on J2EE concepts that pertain to use of Connector/J.

1.5.2.1.1. Understanding Connection Pooling

Connection pooling is a technique of creating and managing a pool of connections that are ready for use by any thread that needs them.

This technique of pooling connections is based on the fact that most applications only need a thread to have access to a JDBC connec-
tion when they are actively processing a transaction, which usually take only milliseconds to complete. When not processing a transac-
tion, the connection would otherwise sit idle. Instead, connection pooling allows the idle connection to be used by some other thread to
do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a connection from the pool.
When the thread is finished using the connection, it returns it to the pool, so that it may be used by any other threads that want to use it.

When the connection is loaned out from the pool, it is used exclusively by the thread that requested it. From a programming point of
view, it is the same as if your thread called DriverManager.getConnection() every time it needed a JDBC connection,
however with connection pooling, your thread may end up using either a new, or already-existing connection.

Connection pooling can greatly increase the performance of your Java application, while reducing overall resource usage. The main be-
nefits to connection pooling are:

• Reduced connection creation time

Although this is not usually an issue with the quick connection setup that MySQL offers compared to other databases, creating new
JDBC connections still incurs networking and JDBC driver overhead that will be avoided if connections are recycled.

• Simplified programming model

When using connection pooling, each individual thread can act as though it has created its own JDBC connection, allowing you to
use straight-forward JDBC programming techniques.

• Controlled resource usage

If you don't use connection pooling, and instead create a new connection every time a thread needs one, your application's resource
usage can be quite wasteful and lead to unpredictable behavior under load.

Remember that each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client and server

MySQL Connector/J

43

side. Every connection limits how many resources there are available to your application as well as the MySQL server. Many of these
resources will be used whether or not the connection is actually doing any useful work!

Connection pools can be tuned to maximize performance, while keeping resource utilization below the point where your application
will start to fail rather than just run slower.

Luckily, Sun has standardized the concept of connection pooling in JDBC through the JDBC-2.0 Optional interfaces, and all major ap-
plication servers have implementations of these APIs that work fine with MySQL Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it via the Java Naming and Direct-
ory Interface (JNDI). The following code shows how you might use a connection pool from an application deployed in a J2EE applica-
tion server:

Example 11. Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

import javax.naming.InitialContext;
import javax.sql.DataSource;

public class MyServletJspOrEjb {

public void doSomething() throws Exception {
/*
* Create a JNDI Initial context to be able to
* lookup the DataSource
*
* In production-level code, this should be cached as
* an instance or static variable, as it can
* be quite expensive to create a JNDI context.
*
* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are
* using connection pooling in standalone Java code, you
* will have to create/configure datasources using whatever
* mechanisms your particular connection pooling library
* provides.
*/

InitialContext ctx = new InitialContext();

/*
* Lookup the DataSource, which will be backed by a pool
* that the application server provides. DataSource instances
* are also a good candidate for caching as an instance
* variable, as JNDI lookups can be expensive as well.
*/

DataSource ds =
(DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

/*
* The following code is what would actually be in your
* Servlet, JSP or EJB 'service' method...where you need
* to work with a JDBC connection.
*/

Connection conn = null;
Statement stmt = null;

try {
conn = ds.getConnection();

/*
* Now, use normal JDBC programming to work with
* MySQL, making sure to close each resource when you're
* finished with it, which allows the connection pool
* resources to be recovered as quickly as possible
*/

stmt = conn.createStatement();
stmt.execute("SOME SQL QUERY");

stmt.close();
stmt = null;

conn.close();
conn = null;

} finally {

MySQL Connector/J

44

/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/

if (stmt != null) {
try {

stmt.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}

stmt = null;
}

if (conn != null) {
try {

conn.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}

conn = null;
}

}
}

}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the DataSource, the rest of the code should
look familiar to anyone who has done JDBC programming in the past.

The most important thing to remember when using connection pooling is to make sure that no matter what happens in your code
(exceptions, flow-of-control, and so forth), connections, and anything created by them (such as statements or result sets) are closed, so
that they may be re-used, otherwise they will be stranded, which in the best case means that the MySQL server resources they represent
(such as buffers, locks, or sockets) may be tied up for some time, or worst case, may be tied up forever.

What's the Best Size for my Connection Pool?

As with all other configuration rules-of-thumb, the answer is: it depends. Although the optimal size depends on anticipated load and av-
erage database transaction time, the optimum connection pool size is smaller than you might expect. If you take Sun's Java Petstore
blueprint application for example, a connection pool of 15-20 connections can serve a relatively moderate load (600 concurrent users)
using MySQL and Tomcat with response times that are acceptable.

To correctly size a connection pool for your application, you should create load test scripts with tools such as Apache JMeter or The
Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of connections to be unbounded, run
a load test, and measure the largest amount of concurrently used connections. You can then work backward from there to determine
what values of minimum and maximum pooled connections give the best performance for your particular application.

1.5.2.2. Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at ht-
tp://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html which is current at the time this document was
written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is available to all applications in-
stalled in the container.

Next, Configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/server.xml in the context
that defines your web application:

<Context>

...

<Resource name="jdbc/MySQLDB"
auth="Container"
type="javax.sql.DataSource"/>

<!-- The name you used above, must match _exactly_ here!

The connection pool will be bound into JNDI with the name
"java:/comp/env/jdbc/MySQLDB"

-->

MySQL Connector/J

45

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html

<ResourceParams name="jdbc/MySQLDB">
<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>

<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<parameter>
<name>maxActive</name>
<value>10</value>

</parameter>

<!-- You don't want to many idle connections hanging around
if you can avoid it, only enough to soak up a spike in
the load -->

<parameter>
<name>maxIdle</name>
<value>5</value>

</parameter>

<!-- Don't use autoReconnect=true, it's going away eventually
and it's a crutch for older connection pools that couldn't
test connections. You need to decide whether your application
is supposed to deal with SQLExceptions (hint, it should), and
how much of a performance penalty you're willing to pay
to ensure 'freshness' of the connection -->

<parameter>
<name>validationQuery</name>
<value>SELECT 1</value>

</parameter>

<!-- The most conservative approach is to test connections
before they're given to your application. For most applications
this is okay, the query used above is very small and takes
no real server resources to process, other than the time used
to traverse the network.

If you have a high-load application you'll need to rely on
something else. -->

<parameter>
<name>testOnBorrow</name>
<value>true</value>

</parameter>

<!-- Otherwise, or in addition to testOnBorrow, you can test
while connections are sitting idle -->

<parameter>
<name>testWhileIdle</name>
<value>true</value>

</parameter>

<!-- You have to set this value, otherwise even though
you've asked connections to be tested while idle,
the idle evicter thread will never run -->

<parameter>
<name>timeBetweenEvictionRunsMillis</name>
<value>10000</value>

</parameter>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes or even fraction of a minute
is sometimes okay here, it depends on your application
and how much spikey load it will see -->

<parameter>
<name>minEvictableIdleTimeMillis</name>
<value>60000</value>

</parameter>

<!-- Username and password used when connecting to MySQL -->

<parameter>
<name>username</name>
<value>someuser</value>
</parameter>

<parameter>
<name>password</name>
<value>somepass</value>
</parameter>

MySQL Connector/J

46

<!-- Class name for the Connector/J driver -->

<parameter>
<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>

<!-- The JDBC connection url for connecting to MySQL, notice
that if you want to pass any other MySQL-specific parameters
you should pass them here in the URL, setting them using the
parameter tags above will have no effect, you will also
need to use & to separate parameter values as the
ampersand is a reserved character in XML -->

<parameter>
<name>url</name>
<value>jdbc:mysql://localhost:3306/test</value>

</parameter>

</ResourceParams>
</Context>

In general, you should follow the installation instructions that come with your version of Tomcat, as the way you configure datasources
in Tomcat changes from time-to-time, and unfortunately if you use the wrong syntax in your XML file, you will most likely end up with
an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

1.5.2.3. Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server, copy the .jar file that comes
with Connector/J to the lib directory for your server configuration (which is usually called default). Then, in the same configura-
tion directory, in the subdirectory named deploy, create a datasource configuration file that ends with "-ds.xml", which tells JBoss to de-
ploy this file as a JDBC Datasource. The file should have the following contents:

<datasources>
<local-tx-datasource>

<!-- This connection pool will be bound into JNDI with the name
"java:/MySQLDB" -->

<jndi-name>MySQLDB</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>user</user-name>
<password>pass</password>

<min-pool-size>5</min-pool-size>

<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<max-pool-size>20</max-pool-size>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes is usually okay here,
it depends on your application
and how much spikey load it will see -->

<idle-timeout-minutes>5</idle-timeout-minutes>

<!-- If you're using Connector/J 3.1.8 or newer, you can use
our implementation of these to increase the robustness
of the connection pool. -->

<exception-sorter-class-name>
com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter

</exception-sorter-class-name>
<valid-connection-checker-class-name>

com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker
</valid-connection-checker-class-name>

</local-tx-datasource>
</datasources>

1.5.2.4. Using Connector/J with Spring

MySQL Connector/J

47

The Spring Framework is a Java-based application framework designed for assisting in application design by providing a way to config-
ure components. The technique used by Spring is a well known design pattern called Dependency Injection (see Inversion of Control
Containers and the Dependency Injection pattern). This article will focus on Java-oriented access to MySQL databases with Spring 2.0.
For those wondering, there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented programming (AOP). This is one
of the main benefits and the foundation for Spring's resource and transaction management. Spring also provides utilities for integrating
resource management with JDBC and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to setup a MySQL data source through
Spring. Components within Spring use the "bean" terminology. For example, to configure a connection to a MySQL server supporting
the world sample database you might use:

<util:map id="dbProps">
<entry key="db.driver" value="com.mysql.jdbc.Driver"/>
<entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
<entry key="db.username" value="myuser"/>
<entry key="db.password" value="mypass"/>

</util:map>

In the above example we are assigning values to properties that will be used in the configuration. For the datasource configuration:

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>

</bean>

The placeholders are used to provide values for properties of this bean. This means that you can specify all the properties of the config-
uration in one place instead of entering the values for each property on each bean. We do, however, need one more bean to pull this all
together. The last bean is responsible for actually replacing the placeholders with the property values.

<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="properties" ref="dbProps"/>
</bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to access it. The example below will
retrieve three random cities and their corresponding country using the data source we configured with Spring.

// Create a new application context. this processes the Spring config
ApplicationContext ctx =

new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context

DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {

// retrieve a list of three random cities
PreparedStatement ps = c.prepareStatement(

"select City.Name as 'City', Country.Name as 'Country' " +
"from City inner join Country on City.CountryCode = Country.Code " +
"order by rand() limit 3");

ResultSet rs = ps.executeQuery();
while(rs.next()) {

String city = rs.getString("City");
String country = rs.getString("Country");
System.out.printf("The city %s is in %s%n", city, country);

}
} catch (SQLException ex) {

// something has failed and we print a stack trace to analyse the error
ex.printStackTrace();
// ignore failure closing connection
try { c.close(); } catch (SQLException e) { }

} finally {
// properly release our connection
DataSourceUtils.releaseConnection(c, ds);

}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using DataSourceUtils instead of the

MySQL Connector/J

48

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages this resource in a way similar to
a container managed data source in a J2EE application server. When a connection is opened, it can be subsequently accessed in other
parts of the code if it is synchronized with a transaction. This makes it possible to treat different parts of your application as transaction-
al instead of passing around a database connection.

1.5.2.4.1. Using JdbcTemplate

Spring makes extensive use of the Template method design pattern (see Template Method Pattern). Our immediate focus will be on the
JdbcTemplate and related classes, specifically NamedParameterJdbcTemplate. The template classes handle obtaining and re-
leasing a connection for data access when one is needed.

The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access Object) class to retrieve a
random city given a country code.

public class Ex2JdbcDao {
/**
* Data source reference which will be provided by Spring.
*/
private DataSource dataSource;

/**
* Our query to find a random city given a country code. Notice
* the ":country" parameter towards the end. This is called a
* named parameter.
*/
private String queryString = "select Name from City " +

"where CountryCode = :country order by rand() limit 1";

/**
* Retrieve a random city using Spring JDBC access classes.
*/
public String getRandomCityByCountryCode(String cntryCode) {

// A template that allows using queries with named parameters
NamedParameterJdbcTemplate template =
new NamedParameterJdbcTemplate(dataSource);
// A java.util.Map is used to provide values for the parameters
Map params = new HashMap();
params.put("country", cntryCode);
// We query for an Object and specify what class we are expecting
return (String)template.queryForObject(queryString, params, String.class);

}

/**
* A JavaBean setter-style method to allow Spring to inject the data source.
* @param dataSource
*/
public void setDataSource(DataSource dataSource) {

this.dataSource = dataSource;
}

}

The focus in the above code is on the getRandomCityByCountryCode() method. We pass a country code and use the Named-
ParameterJdbcTemplate to query for a city. The country code is placed in a Map with the key "country", which is the parameter
is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean id="dao" class="code.Ex2JdbcDao">
<property name="dataSource" ref="dataSource"/>

</bean>

At this point, we can just grab a reference to the DAO from Spring and call getRandomCityByCountryCode().

// Create the application context
ApplicationContext ctx =
new ClassPathXmlApplicationContext("ex2appContext.xml");
// Obtain a reference to our DAO
Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");

String countryCode = "USA";

// Find a few random cities in the US
for(int i = 0; i < 4; ++i)

System.out.printf("A random city in %s is %s%n", countryCode,
dao.getRandomCityByCountryCode(countryCode));

MySQL Connector/J

49

http://en.wikipedia.org/wiki/Template_method_pattern

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional JDBC classes including Con-
nection and PreparedStatement.

1.5.2.4.2. Transactional JDBC Access

You might be wondering how we can add transactions into our code if we don't deal directly with the JDBC classes. Spring provides a
transaction management package that not only replaces JDBC transaction management, but also allows declarative transaction manage-
ment (configuration instead of code).

In order to use transactional database access, we will need to change the storage engine of the tables in the world database. The down-
loaded script explicitly creates MyISAM tables which do not support transactional semantics. The InnoDB storage engine does support
transactions and this is what we will be using. We can change the storage engine with the following statements.

ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What this means is that we can cre-
ate a Java interface and only use the operations on this interface without any internal knowledge of what the actual implementation is.
We will let Spring manage the implementation and with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer population);

}

This interface contains one method that will create a new city record in the database and return the id of the new record. Next you need
to create an implementation of this interface.

public class Ex3DaoImpl implements Ex3Dao {
protected DataSource dataSource;
protected SqlUpdate updateQuery;
protected SqlFunction idQuery;

public Integer createCity(String name, String countryCode,
String district, Integer population) {

updateQuery.update(new Object[] { name, countryCode,
district, population });

return getLastId();
}

protected Integer getLastId() {
return idQuery.run();

}
}

You can see that we only operate on abstract query objects here and don't deal directly with the JDBC API. Also, this is the complete
implementation. All of our transaction management will be dealt with in the configuration. To get the configuration started, we need to
create the DAO.

<bean id="dao" class="code.Ex3DaoImpl">
<property name="dataSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>

</bean>

Now you need to setup the transaction configuration. The first thing you must do is create transaction manager to manage the data
source and a specification of what transaction properties are required for for the dao methods.

<bean id="transactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

</bean>

<tx:advice id="txAdvice" transaction-manager="transactionManager">
<tx:attributes>

<tx:method name="*"/>
</tx:attributes>

</tx:advice>

MySQL Connector/J

50

The preceding code creates a transaction manager that handles transactions for the data source provided to it. The txAdvice uses this
transaction manager and the attributes specify to create a transaction for all methods. Finally you need to apply this advice with an AOP
pointcut.

<aop:config>
<aop:pointcut id="daoMethods"

expression="execution(* code.Ex3Dao.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>

</aop:config>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To make use of this, you only
have to retrieve the dao from the application context and call a method on the dao instance.

Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it's all configured with Spring. This is a
very powerful notion and regarded as one of the most beneficial features of Spring.

1.5.2.4.3. Connection Pooling

In many sitations, such as web applications, there will be a large number of small database transactions. When this is the case, it usually
makes sense to create a pool of database connections available for web requests as needed. Although MySQL does not spawn an extra
process when a connection is made, there is still a small amount of overhead to create and setup the connection. Pooling of connections
also alleviates problems such as collecting large amounts of sockets in the TIME_WAIT state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source configuration in the application context.
There are a number of configurations that we can use. The first example is based on the Jakarta Commons DBCP library. The example
below replaces the source configuration that was based on DriverManagerDataSource with DBCP's BasicDataSource.

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>
<property name="initialSize" value="3"/>

</bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections to the database instead of cre-
ating a new connection every time one is requested. We have also set a parameter here called initialSize. This tells DBCP that we
want three connections in the pool when it is created.

Another way to configure connection pooling is to configure a data source in our J2EE application server. Using JBoss as an example,
you can set up the MySQL connection pool by creating a file called mysql-local-ds.xml and placing it in the server/de-
fault/deploy directory in JBoss. Once we have this setup, we can use JNDI to look it up. With Spring, this lookup is very simple. The
data source configuration looks like this.

<jee:jndi-lookup id="dataSource" jndi-name="java:MySQL_DS"/>

1.5.3. Common Problems and Solutions

There are a few issues that seem to be commonly encountered often by users of MySQL Connector/J. This section deals with their
symptoms, and their resolutions.

Questions

• 1.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

• 1.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

MySQL Connector/J

51

http://jakarta.apache.org/commons/dbcp/

• 1.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 1.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 1.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result set is not updatable.

• 1.5.3.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection paramters are correct.

• 1.5.3.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed

STACKTRACE:

java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

• 1.5.3.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL database.
Under heavy loads I am getting a error and stack trace, but these only occur after a fixed period of heavy activity.

• 1.5.3.9: When using gcj an java.io.CharConversionException is raised when working with certain character se-
quences.

• 1.5.3.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails to up-
date the table and raises an exception.

Questions and Answers

1.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Domain Sockets. Therefore, when
MySQL Connector/J connects to MySQL, the security manager in MySQL server will use its grant tables to determine whether the con-
nection should be allowed.

You must add the necessary security credentials to the MySQL server for this to happen, using the GRANT statement to your MySQL
Server. See GRANT Syntax, for more information.

Note

Testing your connectivity with the mysql command-line client will not work unless you add the --host flag, and use
something other than localhost for the host. The mysql command-line client will use Unix domain sockets if you use
the special hostname localhost. If you are testing connectivity to localhost, use 127.0.0.1 as the hostname in-
stead.

Warning

Changing privileges and permissions improperly in MySQL can potentially cause your server installation to not have op-
timal security properties.

MySQL Connector/J

52

http://dev.mysql.com/doc/refman/5.0/en/grant.html

1.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Section 1.2, “Connector/J Installation”.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the location of the Connector/J
driver.

1.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "--skip-networking" option set, or your MySQL server
has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the .class files for the applet. This
means that MySQL must run on the same machine (or you must have some sort of port re-direction) for this to work. This also means
that you will not be able to test applets from your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix domain sockets. TCP/IP com-
munication with MySQL might be affected if MySQL was started with the "--skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "--skip-networking" option set (the Debian Linux package of MySQL server does this for example),
you need to comment it out in the file /etc/mysql/my.cnf or /etc/my.cnf. Of course your my.cnf file might also exist in the data direct-
ory of your MySQL server, or anywhere else (depending on how MySQL was compiled for your system). Binaries created by MySQL
AB always look in /etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you will need to have the firewall con-
figured to allow TCP/IP connections from the host where your Java code is running to the MySQL server on the port that MySQL is
listening to (by default, 3306).

1.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that handles stale connections or use the
"autoReconnect" parameter (see Section 1.4.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Con-
nector/J”).

Also, you should be catching SQLExceptions in your application and dealing with them, rather than propagating them all the way until
your application exits, this is just good programming practice. MySQL Connector/J will set the SQLState (see
java.sql.SQLException.getSQLState() in your APIDOCS) to "08S01" when it encounters network-connectivity issues
during the processing of a query. Your application code should then attempt to re-connect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 12. Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;

//
// How many times do you want to retry the transaction
// (or at least _getting_ a connection)?
//
int retryCount = 5;

boolean transactionCompleted = false;

do {

MySQL Connector/J

53

try {
conn = getConnection(); // assume getting this from a

// javax.sql.DataSource, or the
// java.sql.DriverManager

conn.setAutoCommit(false);

//
// Okay, at this point, the 'retry-ability' of the
// transaction really depends on your application logic,
// whether or not you're using autocommit (in this case
// not), and whether you're using transacational storage
// engines
//
// For this example, we'll assume that it's _not_ safe
// to retry the entire transaction, so we set retry
// count to 0 at this point
//
// If you were using exclusively transaction-safe tables,
// or your application could recover from a connection going
// bad in the middle of an operation, then you would not
// touch 'retryCount' here, and just let the loop repeat
// until retryCount == 0.
//
retryCount = 0;

stmt = conn.createStatement();

String query = "SELECT foo FROM bar ORDER BY baz";

rs = stmt.executeQuery(query);

while (rs.next()) {
}

rs.close();
rs = null;

stmt.close();
stmt = null;

conn.commit();
conn.close();
conn = null;

transactionCompleted = true;
} catch (SQLException sqlEx) {

//
// The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 40001 for deadlock.
//
// Only retry if the error was due to a stale connection,
// communications problem or deadlock
//

String sqlState = sqlEx.getSQLState();

if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
retryCount--;

} else {
retryCount = 0;

}
} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this . . .
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this as well . . .
}

}

if (conn != null) {
try {

//
// If we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done

try {
conn.rollback();

} finally {

MySQL Connector/J

54

conn.close();
}

} catch (SQLException sqlEx) {
//
// If we got an exception here, something
// pretty serious is going on, so we better
// pass it up the stack, rather than just
// logging it. . .

throw sqlEx;
}

}
}

} while (!transactionCompleted && (retryCount > 0));
}

Note

Use of the autoReconnect option is not recommended because there is no safe method of reconnecting to the MySQL
server without risking some corruption of the connection state or database state information. Instead, you should use a con-
nection pool which will enable your application to connect to the MySQL server using an available connection from the
pool. The autoReconnect facility is deprecated, and may be removed in a future release.

1.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result set is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have come from queries on tables
that have at least one primary key, the query must select every primary key and the query can only span one table (that is, no joins).
This is outlined in the JDBC specification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is unable to guarantee that it can
identify the correct rows within the result set to be updated without having a unique reference to each row. There is no requirement to
have a unique field on a table if you are using UPDATE or DELETE statements on a table where you can individually specify the criteria
to be matched using a WHERE clause.

1.5.3.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection paramters are correct.

Make sure that the skip-networking option has not been enabled on your server. Connector/J must be able to communicate with
your server over TCP/IP, named sockets are not supported. Also ensure that you are not filtering connections through a Firewall or other
network security system. For more informaiton, see Can't connect to [local] MySQL server.

1.5.3.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed

STACKTRACE:

java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

The error probably indicates that you are using a older version of the Connector/J JDBC driver (2.0.14 or 3.0.x) and you are trying to
connect to a MySQL server with version 4.1x or newer. The older drivers are not compatible with 4.1 or newer of MySQL as they do
not support the newer authentication mechanisms.

It is likely that the older version of the Connector/J driver exists within your application directory or your CLASSPATH includes the
older Connector/J package.

1.5.3.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL data-
base. Under heavy loads I am getting a error and stack trace, but these only occur after a fixed period of heavy activity.

This is a JBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the time taken for transactions to
complete can increase, and the error is caused because you have exceeded the predefined timeout.

You can increase the timeout value by setting the TransactionTimeout attribute to the TransactionManagerService with-

MySQL Connector/J

55

http://dev.mysql.com/doc/refman/5.0/en/can-not-connect-to-server.html

in the /conf/jboss-service.xml file (pre-4.0.3) or /deploy/jta-service.xml for JBoss 4.0.3 or later. See Transaction-
Timeoute within the JBoss wiki for more information.

1.5.3.9: When using gcj an java.io.CharConversionException is raised when working with certain character se-
quences.

This is a known issue with gcj which raises an exception when it reaches an unknown character or one it cannot convert. You should
add useJvmCharsetConverters=true to your connection string to force character conversion outside of the gcj libraries, or try
a different JDK.

1.5.3.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails to
update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary key. If there is no match
then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database may mean that the values never
match, and hence the update fails. The issue will affect all queries, not just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point column in your primary key use
DOUBLE or DECIMAL types in place of FLOAT.

1.6. Connector/J Support

1.6.1. Connector/J Community Support

MySQL AB provides assistance to the user community by means of its mailing lists. For Connector/J related issues, you can get help
from experienced users by using the MySQL and Java mailing list. Archives and subscription information is available online at ht-
tp://lists.mysql.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See MySQL Mailing
Lists.

Community support from experienced users is also available through the JDBC Forum. You may also find help from other users in the
other MySQL Forums, located at http://forums.mysql.com. See MySQL Community Support at the MySQL Forums.

1.6.2. How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database. This database is public, and can
be browsed and searched by anyone. If you log in to the system, you will also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to security_at_mysql.com.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report,
containing a full test case for the bug, makes it very likely that we will fix the bug in the next release.

This section will help you write your report correctly so that you don't waste your time doing things that may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any bug that we are able to repeat
has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to one containing too little. People
often omit facts because they think they know the cause of a problem and assume that some details don't matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less troublesome to write a couple more
lines in your report than to wait longer for the answer if we must ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or MySQL used, and (b) not fully
describing the platform on which Connector/J is installed (including the JVM version, and the platform type and version number that
MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very often we get questions like,
“Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version, or that a bug de-
scribed in a report has already been fixed in newer MySQL versions.

MySQL Connector/J

56

http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://lists.mysql.com/java
http://lists.mysql.com/java
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/forums.html
http://bugs.mysql.com/
mailto:security_at_mysql.com
http://bugs.mysql.com/

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything without knowing the operating
system and the version number of the platform.

If at all possible, you should create a repeatable, stanalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class, create your own class that in-
herits from com.mysql.jdbc.util.BaseBugReport and override the methods setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed to demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, you should use one of the variants of the getConnection() method to create a JDBC connection
to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a connection already exists, that con-
nection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (i.e. there's more than one connection
involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the given URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl() as well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage, boolean expres-
sion) methods to create conditions that must be met in your testcase demonstrating the behavior you are expecting (vs. the behavior
you are observing, which is why you are most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run method:

public static void main(String[] args) throws Exception {
new MyBugReport().run();

}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting, upload it with your bug report to
http://bugs.mysql.com/.

1.6.3. Connector/J Change History

The Connector/J Change History (Changelog) is located with the main Changelog for MySQL. See MySQL Connector/J Change His-
tory.

MySQL Connector/J

57

http://bugs.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/cj-news.html
http://dev.mysql.com/doc/refman/5.1/en/cj-news.html

	1. MySQL Connector/J
	Table of Contents
	1.1. Connector/J Versions
	1.1.1. Java Versions Supported

	1.2. Connector/J Installation
	1.2.1. Installing Connector/J from a Binary Distribution
	1.2.2. Installing the Driver and Configuring the CLASSPATH
	1.2.3. Upgrading from an Older Version
	1.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1
	1.2.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

	1.2.4. Installing from the Development Source Tree

	1.3. Connector/J Examples
	1.4. Connector/J (JDBC) Reference
	1.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	1.4.2. JDBC API Implementation Notes
	1.4.3. Java, JDBC and MySQL Types
	1.4.4. Using Character Sets and Unicode
	1.4.5. Connecting Securely Using SSL
	1.4.6. Using Master/Slave Replication with ReplicationConnection
	1.4.7. Mapping MySQL Error Numbers to SQLStates

	1.5. Connector/J Notes and Tips
	1.5.1. Basic JDBC Concepts
	1.5.1.1. Connecting to MySQL Using the DriverManager Interface
	1.5.1.2. Using Statements to Execute SQL
	1.5.1.3. Using CallableStatements to Execute Stored Procedures
	1.5.1.4. Retrieving AUTO_INCREMENT Column Values

	1.5.2. Using Connector/J with J2EE and Other Java Frameworks
	1.5.2.1. General J2EE Concepts
	1.5.2.1.1. Understanding Connection Pooling

	1.5.2.2. Using Connector/J with Tomcat
	1.5.2.3. Using Connector/J with JBoss
	1.5.2.4. Using Connector/J with Spring
	1.5.2.4.1. Using JdbcTemplate
	1.5.2.4.2. Transactional JDBC Access
	1.5.2.4.3. Connection Pooling

	1.5.3. Common Problems and Solutions

	1.6. Connector/J Support
	1.6.1. Connector/J Community Support
	1.6.2. How to Report Connector/J Bugs or Problems
	1.6.3. Connector/J Change History

